Patrik Kraufvelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8724554/publications.pdf

Version: 2024-02-01

45 papers

1,351 citations

279487 23 h-index 36 g-index

46 all docs

46 docs citations

46 times ranked 1541 citing authors

#	Article	IF	CITATIONS
1	Non-native marine invertebrates are more tolerant towards environmental stress than taxonomically related native species: Results from a globally replicated study. Environmental Research, $2011, 111, 943-952$.	3.7	118
2	Eutrophication-induced changes in benthic algae affect the behaviour and fitness of the marine amphipod Gammarus locusta. Aquatic Botany, 2006, 84, 199-209.	0.8	92
3	Biomass response and changes in composition of ephemeral macroalgal assemblages along an experimental gradient of nutrient enrichment. Aquatic Botany, 2004, 78, 103-117.	0.8	84
4	Animal diversity in Baltic rocky shore macroalgae: can Cladophora glomerata compensate for lost Fucus vesiculosus?. Estuarine, Coastal and Shelf Science, 2004, 61, 369-378.	0.9	78
5	Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Marine Biology, 2010, 157, 29-47.	0.7	65
6	Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 709, 136144.	3.9	63
7	The Response of Experimental Rocky Shore Communities to Nutrient Additions. Ecosystems, 2003, 6, 577-594.	1.6	58
8	Temporal stability of European rocky shore assemblages: variation across a latitudinal gradient and the role of habitatâ€formers. Oikos, 2012, 121, 1801-1809.	1.2	53
9	Nutrient Addition to Experimental Rocky Shore Communities Revisited: Delayed Responses, Rapid Recovery. Ecosystems, 2006, 9, 1076-1093.	1.6	51
10	Essential coastal habitats for fish in the Baltic Sea. Estuarine, Coastal and Shelf Science, 2018, 204, 14-30.	0.9	48
11	Responses to nutrient enrichment, wave action and disturbance in rocky shore communities. Aquatic Botany, 2007, 87, 262-274.	0.8	45
12	Model ecosystem replicability challenged by the "soft―reality of a hard bottom mesocosm. Journal of Experimental Marine Biology and Ecology, 1998, 222, 247-267.	0.7	43
13	Mechanisms regulating amphipod population density within macroalgal communities with low predator impact. Scientia Marina, 2004, 68, 189-198.	0.3	36
14	Title is missing!. Hydrobiologia, 2002, 484, 167-175.	1.0	35
15	The filamentous green alga <i>Cladophora glomerata</i> as a habitat for littoral macro-fauna in the Northern Baltic Sea. Ophelia, 2004, 58, 65-78.	0.3	34
16	Baltic hard bottom mesocosms unplugged: replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. Journal of Experimental Marine Biology and Ecology, 1999, 240, 229-258.	0.7	32
17	Changes in zoobenthic community structure after pollution abatement from fish farms in the Archipelago Sea (N. Baltic Sea). Marine Environmental Research, 2001, 51, 229-245.	1.1	30
18	Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness. PLoS ONE, 2011, 6, e19514.	1.1	28

#	Article	IF	CITATIONS
19	A Model for Disentangling Dependencies and Impacts among Human Activities and Marine Ecosystem Services. Environmental Management, 2020, 65, 575-586.	1.2	26
20	Winter colonisation and succession of filamentous macroalgae on artificial substrates and possible relationships to Fucus vesiculosus settlement in early summer. Estuarine, Coastal and Shelf Science, 2007, 72, 665-674.	0.9	25
21	Title is missing!. Hydrobiologia, 2002, 484, 149-166.	1.0	24
22	Increased seawater temperature and light during early springs accelerate receptacle growth of Fucus vesiculosus in the northern Baltic proper. Marine Biology, 2012, 159, 1795-1807.	0.7	24
23	Relative impacts of fishing and eutrophication on coastal fish assessed by comparing a no-take area with an environmental gradient. Ambio, 2019, 48, 565-579.	2.8	24
24	Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea. Marine Biology, 2011, 158, 2001-2008.	0.7	23
25	Combining gut fluorescence technique and spatial analysis to determine Littorina littorea grazing dynamics in nutrient-enriched and nutrient-unenriched littoral mesocosms. Marine Biology, 2012, 159, 837-852.	0.7	23
26	Scale-dependent distribution of soft-bottom infauna and possible structuring forces in low diversity systems. Marine Ecology - Progress Series, 2011, 426, 13-28.	0.9	20
27	Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system. Marine Biology, 2016, 163, 201.	0.7	18
28	Relationships between biodiversity and the stability of marine ecosystems: Comparisons at a European scale using meta-analysis. Journal of Sea Research, 2015, 98, 5-14.	0.6	16
29	Heat challenges can enhance population tolerance to thermal stress in mussels: a potential mechanism by which ship transport can increase species invasiveness. Biological Invasions, 2018, 20, 3107-3122.	1.2	16
30	Depth-related spatial patterns of sublittoral blue mussel beds and their associated macrofaunal diversity revealed by geostatistical analyses. Marine Ecology - Progress Series, 2015, 540, 121-134.	0.9	15
31	Is habitat amount important for biodiversity in rocky shore systems? A study of South African mussel assemblages. Marine Biology, 2014, 161, 1507-1519.	0.7	13
32	Benthic conditions around a historic shipwreck: Vrouw Maria (1771) in the northern Baltic proper. Continental Shelf Research, 2015, 98, 1-12.	0.9	11
33	Geographic variation in fitnessâ€related traits of the bladderwrack Fucus vesiculosus along the Baltic Seaâ€North Sea salinity gradient. Ecology and Evolution, 2019, 9, 9225-9238.	0.8	11
34	Littoral macrofauna (secondary) responses to experimental nutrient addition to rocky shore mesocosms and a coastal lagoon., 2002,, 149-166.		9
35	Assessing the potential for sea-based macroalgae cultivation and its application for nutrient removal in the Baltic Sea. Science of the Total Environment, 2022, 839, 156230.	3.9	9
36	Wave stress and biotic facilitation drive community composition in a marginal hardâ€bottom ecosystem. Ecosphere, 2019, 10, e02883.	1.0	8

3

#	Article	IF	Citations
37	Disappearing Blue Mussels – Can Mesopredators Be Blamed?. Frontiers in Marine Science, 2020, 7, .	1.2	8
38	Digging for and grabbing the answers: novel whole-ecosystem approach quantifies damage and reveals mechanisms of invader-driven habitat destruction. Marine Biology, 2014, 161, 1-2.	0.7	7
39	Environmental compensation for biodiversity and ecosystem services: A flexible framework that addresses human wellbeing. Ecosystem Services, 2021, 50, 101319.	2.3	7
40	Macroalgal grazing by the green sea urchin: born to consume resources. Marine Biology, 2017, 164, 1.	0.7	6
41	Top-down release of mesopredatory fish is a weaker structuring driver of temperate rocky shore communities than bottom-up nutrient enrichment. Marine Biology, 2020, 167, 1.	0.7	6
42	Explaining Recruitment Stochasticity at a Species' Range Margin. Frontiers in Marine Science, 2021, 8, .	1.2	3
43	Pending possible establishment of Littorina littorea in the Pacific: to know the remedy, know thine enemy. Marine Biology, 2013, 160, 1525-1527.	0.7	2
44	Response to a letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of the Total Environment, 2020, 739, 138712.	3.9	2
45	Are rocky shore ecosystems affected by nutrient-enriched seawater? Some preliminary results from a mesocosm experiment., 2002,, 167-175.		2