
## David J Martino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872452/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Epigenetics and Prenatal Influences on Asthma and Allergic Airways Disease. Chest, 2011, 139, 640-647.                                                                                                                                                         | 0.4  | 206       |
| 2  | Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age<br>reveals rapid epigenetic change in early life and pair-specific effects of discordance. Genome Biology,<br>2013, 14, R42.                                    | 13.9 | 172       |
| 3  | Silent mysteries: epigenetic paradigms could hold the key to conquering the epidemic of allergy and immune disease. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 7-15.                                                              | 2.7  | 148       |
| 4  | Evidence for age-related and individual-specific changes in DNA methylation profile of mononuclear cells during early immune development in humans. Epigenetics, 2011, 6, 1085-1094.                                                                           | 1.3  | 120       |
| 5  | Postnatal Fish Oil Supplementation in High-Risk Infants to Prevent Allergy: Randomized Controlled<br>Trial. Pediatrics, 2012, 130, 674-682.                                                                                                                    | 1.0  | 117       |
| 6  | Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics, 2014, 9, 998-1006.                                                                       | 1.3  | 106       |
| 7  | Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Medicine, 2013, 5, 96.                                                                                          | 3.6  | 101       |
| 8  | Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. Journal of Allergy and Clinical Immunology, 2015, 135, 1319-1328.e12.                                                                                                 | 1.5  | 86        |
| 9  | Gestational diabetes and maternal obesity are associated with epigenome-wide methylation changes in children. JCI Insight, 2018, 3, .                                                                                                                          | 2.3  | 83        |
| 10 | Cohort Profile: The HealthNuts Study: Population prevalence and environmental/genetic predictors of food allergy. International Journal of Epidemiology, 2015, 44, 1161-1171.                                                                                  | 0.9  | 80        |
| 11 | Genomeâ€wide DNA methylation profiling identifies a folateâ€sensitive region of differential methylation<br>upstream of <i>ZFP57</i> â€imprinting regulator in humans. FASEB Journal, 2014, 28, 4068-4076.                                                     | 0.2  | 75        |
| 12 | Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nature<br>Communications, 2018, 9, 3308.                                                                                                                             | 5.8  | 71        |
| 13 | Egg allergen specific IgE diversity predicts resolution of egg allergy in the population cohort<br>HealthNuts. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 318-326.                                                                | 2.7  | 66        |
| 14 | Genome-wide association study and meta-analysis in multiple populations identifies new loci for<br>peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy. Journal of<br>Allergy and Clinical Immunology, 2018, 141, 991-1001. | 1.5  | 57        |
| 15 | The skin barrier function gene <i><scp>SPINK</scp>5</i> is associated withÂchallengeâ€proven<br>IgEâ€mediated food allergy in infants. Allergy: European Journal of Allergy and Clinical Immunology,<br>2017, 72, 1356-1364.                                   | 2.7  | 56        |
| 16 | Early life innate immune signatures of persistent food allergy. Journal of Allergy and Clinical<br>Immunology, 2018, 142, 857-864.e3.                                                                                                                          | 1.5  | 55        |
| 17 | Polymorphisms affecting vitamin D–binding protein modify the relationship between serum vitamin D<br>(25[OH]D3) and food allergy. Journal of Allergy and Clinical Immunology, 2016, 137, 500-506.e4.                                                           | 1.5  | 52        |
| 18 | Tâ€cell activation genes differentially expressed at birth in CD4 <sup>+</sup> Tâ€cells from children who<br>develop IgE food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67,<br>191-200.                                     | 2.7  | 47        |

DAVID J MARTINO

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Epigenome-wide analysis of neonatal CD4 <sup>+</sup> T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. Epigenetics, 2014, 9, 1570-1576.                                    | 1.3 | 46        |
| 20 | Relationship between early intestinal colonization, mucosal immunoglobulin A production and systemic immune development. Clinical and Experimental Allergy, 2008, 38, 69-78.                                     | 1.4 | 40        |
| 21 | Persistent Food Allergy and Food Allergy Coexistent with Eczema Is Associated with Reduced Growth<br>in the First 4 Years of Life. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 248-256.e3. | 2.0 | 40        |
| 22 | Genomewide association study of peanut allergy reproduces association with amino acid<br>polymorphisms in <i><scp>HLA</scp>â€<scp>DRB</scp>1</i> . Clinical and Experimental Allergy, 2017, 47,<br>217-223.      | 1.4 | 40        |
| 23 | Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. Journal of Allergy and Clinical Immunology, 2018, 141, 1699-1710.e7.               | 1.5 | 37        |
| 24 | Genetic determinants of paediatric food allergy: A systematic review. Allergy: European Journal of<br>Allergy and Clinical Immunology, 2019, 74, 1631-1648.                                                      | 2.7 | 37        |
| 25 | Oral immunotherapy and tolerance induction in childhood. Pediatric Allergy and Immunology, 2013, 24, 512-520.                                                                                                    | 1.1 | 35        |
| 26 | Epigenetics in immune development and in allergic and autoimmune diseases. Journal of Reproductive<br>Immunology, 2014, 104-105, 43-48.                                                                          | 0.8 | 34        |
| 27 | The ontogeny of naÃ⁻ve and regulatory CD4 <sup>+</sup> Tâ€cell subsets during the first postnatal year:<br>a cohort study. Clinical and Translational Immunology, 2015, 4, e34.                                  | 1.7 | 34        |
| 28 | Genome-scale profiling reveals a subset of genes regulated by DNA methylation that program somatic<br>T-cell phenotypes in humans. Genes and Immunity, 2012, 13, 388-398.                                        | 2.2 | 33        |
| 29 | Variable promoter methylation contributes to differential expression of key genes in human placenta-derived venous and arterial endothelial cells. BMC Genomics, 2013, 14, 475.                                  | 1.2 | 32        |
| 30 | Foodâ€allergic infants have impaired regulatory Tâ€cell responses following <i>in vivo</i> allergen<br>exposure. Pediatric Allergy and Immunology, 2016, 27, 35-43.                                              | 1.1 | 32        |
| 31 | Epigenetic Regulation in Early Childhood: A Miniaturized and Validated Method to Assess Histone<br>Acetylation. International Archives of Allergy and Immunology, 2015, 168, 173-181.                            | 0.9 | 31        |
| 32 | Genetic variation at the Th2 immune gene <i><scp>IL</scp>13</i> is associated with IgEâ€mediated paediatric food allergy. Clinical and Experimental Allergy, 2017, 47, 1032-1037.                                | 1.4 | 29        |
| 33 | Progress in Understanding the Epigenetic Basis for Immune Development, Immune Function, and the<br>Rising Incidence of Allergic Disease. Current Allergy and Asthma Reports, 2013, 13, 85-92.                    | 2.4 | 25        |
| 34 | Risk Factors for Gut Dysbiosis in Early Life. Microorganisms, 2021, 9, 2066.                                                                                                                                     | 1.6 | 25        |
| 35 | Children of Asian ethnicity in Australia have higher risk of food allergy and earlyâ€onset eczema than<br>those in Singapore. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3171-3182. | 2.7 | 24        |
| 36 | Genetic Variations in IL28B and Allergic Disease in Children. PLoS ONE, 2012, 7, e30607.                                                                                                                         | 1.1 | 23        |

3

DAVID J MARTINO

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Environmental and genetic determinants of vitamin D insufficiency in 12-month-old infants. Journal of<br>Steroid Biochemistry and Molecular Biology, 2014, 144, 445-454.                                                      | 1.2 | 23        |
| 38 | Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants: A pilot study. Prostaglandins Leukotrienes and Essential Fatty Acids, 2015, 101, 1-7. | 1.0 | 22        |
| 39 | A Canadian genome-wide association study and meta-analysis confirm HLA as a risk factor for peanut allergy independent of asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1513-1516.                           | 1.5 | 21        |
| 40 | Reduced placental FOXP3 associated with subsequent infant allergic disease. Journal of Allergy and Clinical Immunology, 2011, 128, 886-887.e5.                                                                                | 1.5 | 20        |
| 41 | In vitro exposure of human blood mononuclear cells to active vitamin D does not induce substantial change to DNA methylation on a genome-scale. Journal of Steroid Biochemistry and Molecular Biology, 2014, 141, 144-149.    | 1.2 | 19        |
| 42 | Food for thought. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 237-242.                                                                                                                                      | 1.1 | 16        |
| 43 | A novel role for interleukinâ€1 receptor signaling in the developmental regulation of immune responses<br>to endotoxin. Pediatric Allergy and Immunology, 2012, 23, 567-572.                                                  | 1.1 | 14        |
| 44 | Epigenetic modifications: mechanisms of disease and biomarkers of food allergy. Current Opinion in<br>Immunology, 2016, 42, 9-15.                                                                                             | 2.4 | 14        |
| 45 | The Effects of Chlorinated Drinking Water on the Assembly of the Intestinal Microbiome. Challenges, 2019, 10, 10.                                                                                                             | 0.9 | 14        |
| 46 | Methylation of the filaggrin gene promoter does not affect gene expression and allergy. Pediatric<br>Allergy and Immunology, 2014, 25, 608-610.                                                                               | 1.1 | 13        |
| 47 | The DNA methylation landscape of CD4+ T cells in oligoarticular juvenile idiopathic arthritis. Journal of Autoimmunity, 2018, 86, 29-38.                                                                                      | 3.0 | 13        |
| 48 | Folate levels in pregnancy and offspring food allergy and eczema. Pediatric Allergy and Immunology, 2020, 31, 38-46.                                                                                                          | 1.1 | 12        |
| 49 | Children with East Asian-Born Parents Have an Increased Risk of Allergy but May Not Have More<br>Asthma in Early Childhood. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 539-547.e3.                     | 2.0 | 10        |
| 50 | Mapping the landscape of chromatin dynamics during naÃ⁻ve CD4+ T-cell activation. Scientific Reports,<br>2021, 11, 14101.                                                                                                     | 1.6 | 10        |
| 51 | The role of gene-environment interactions in the development of food allergy. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1371-1378.                                                                           | 1.4 | 8         |
| 52 | B ell phenotype and function in infants with egg allergy. Allergy: European Journal of Allergy and<br>Clinical Immunology, 2019, 74, 1022-1025.                                                                               | 2.7 | 8         |
| 53 | The Potential Effects of Short-Chain Fatty Acids on the Epigenetic Regulation of Innate Immune Memory. Challenges, 2020, 11, 25.                                                                                              | 0.9 | 8         |
| 54 | Association of prenatal alcohol exposure with offspring DNA methylation in mammals: a systematic review of the evidence. Clinical Epigenetics, 2022, 14, 12.                                                                  | 1.8 | 7         |

DAVID J MARTINO

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Meeting the challenges of measuring human immune regulation. Journal of Immunological Methods, 2015, 424, 1-6.                                                                           | 0.6 | 6         |
| 56 | Phenotype consensus is required to enable largeâ€scale genetic consortium studies of food allergy.<br>Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2383-2387. | 2.7 | 5         |
| 57 | Multiomics and Systems Biology Are Needed to Unravel the Complex Origins of Chronic Disease.<br>Challenges, 2019, 10, 23.                                                                | 0.9 | 3         |
| 58 | Progress in Understanding Postnatal Immune Dysregulation in Allergic Disease. World Allergy<br>Organization Journal, 2010, 3, 162-166.                                                   | 1.6 | 2         |
| 59 | Epigenetic Aberrations in Human Allergic Diseases. , 2012, , 369-385.                                                                                                                    |     | 1         |
| 60 | Candidate Gene Testing in Clinical Cohort Studies with Multiplexed Genotyping and Mass<br>Spectrometry. Journal of Visualized Experiments, 2018, , .                                     | 0.2 | 1         |
| 61 | Skin Barrier Function and Candidate Genes IL-13 & SPINK5 in Food Allergy. Journal of Allergy and Clinical Immunology, 2015, 135, AB384.                                                  | 1.5 | 0         |
| 62 | Epigenetic Mechanisms in Food Allergy. , 2019, , 1293-1306.                                                                                                                              |     | 0         |
| 63 | Role of Dietary Components in the Epidemic of Allergic Disease. , 2010, , 353-370.                                                                                                       |     | 0         |
| 64 | Epigenetic Mechanisms in Food Allergy. , 2017, , 1-14.                                                                                                                                   |     | 0         |