Wietske van der Zwaag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8724126/publications.pdf

Version: 2024-02-01

83 papers

4,305 citations

30 h-index 59 g-index

91 all docs 91 docs citations

times ranked

91

5104 citing authors

#	Article	IF	CITATIONS
1	Functional magnetic resonance imaging responses during perceptual decisionâ€making at 3 and 7ÂT in human cortex, striatum, and brainstem. Human Brain Mapping, 2022, 43, 1265-1279.	3.6	11
2	Comparing BOLD and VASO-CBV population receptive field estimates in human visual cortex. NeuroImage, 2022, 248, 118868.	4.2	8
3	Predictive coding during action observation – A depth-resolved intersubject functional correlation study at 7T. Cortex, 2022, 148, 121-138.	2.4	7
4	Auditory timing-tuned neural responses in the human auditory cortices. Neurolmage, 2022, 258, 119366.	4.2	1
5	Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T. Neurolmage, 2021, 226, 117623.	4.2	8
6	Relation between palm and finger cortical representations in primary somatosensory cortex: A 7T fMRI study. Human Brain Mapping, 2021, 42, 2262-2277.	3.6	4
7	QSM reconstruction challenge 2.0: A realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures. Magnetic Resonance in Medicine, 2021, 86, 526-542.	3.0	34
8	Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns. NeuroImage, 2021, 228, 117683.	4.2	25
9	Topographic numerosity maps cover subitizing and estimation ranges. Nature Communications, 2021, 12, 3374.	12.8	24
10	A local multiâ€transmit coil combined with a highâ€density receive array for cerebellar fMRI at 7 T. NMR in Biomedicine, 2021, 34, e4586.	2.8	7
11	Individualized cognitive neuroscience needs 7T: Comparing numerosity maps at 3T and 7T MRI. Neurolmage, 2021, 237, 118184.	4.2	23
12	A line through the brain: implementation of human line-scanning at 7T for ultra-high spatiotemporal resolution fMRI. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2831-2843.	4.3	18
13	Can 7T MPRAGE match MP2RAGE for gray-white matter contrast?. Neurolmage, 2021, 240, 118384.	4.2	15
14	Advances in resting state fMRI acquisitions for functional connectomics. NeuroImage, 2021, 243, 118503.	4.2	58
15	Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 488-500.	4.3	40
16	Whole brain 7T‶MRI during pelvic floor muscle contraction in male subjects. Neurourology and Urodynamics, 2020, 39, 382-392.	1.5	9
17	Laminar analysis of the cerebellar cortex shows widespread damage in early MS patients: A pilot study at 7T MRI. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732096140.	1.0	1
18	Sharpness in motion corrected quantitative imaging at 7T. Neurolmage, 2020, 222, 117227.	4.2	13

#	Article	IF	CITATIONS
19	fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7Ââ€∢T. Neurolmage, 2020, 219, 116992.	4.2	32
20	Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. NeuroImage, 2020, 211, 116624.	4.2	48
21	Single subject and group whole-brain fMRI mapping of male genital sensation at 7 Tesla. Scientific Reports, 2020, 10, 2487.	3.3	10
22	Denoising High-Field Multi-Dimensional MRI With Local Complex PCA. Frontiers in Neuroscience, 2019, 13, 1066.	2.8	20
23	The neural correlates of the awe experience: Reduced default mode network activity during feelings of awe. Human Brain Mapping, 2019, 40, 3561-3574.	3.6	58
24	Topographic Maps of Visual Space in the Human Cerebellum. Current Biology, 2019, 29, 1689-1694.e3.	3.9	69
25	Chronotopic maps in human supplementary motor area. PLoS Biology, 2019, 17, e3000026.	5.6	74
26	Whole brain measurements of the positive BOLD response variability during a finger tapping task at 7 T show regional differences in its profiles. Magnetic Resonance in Medicine, 2019, 81, 2720-2727.	3.0	12
27	MP2RAGEME: T ₁ , T ₂ [*] , and QSM mapping in one sequence at 7 tesla. Human Brain Mapping, 2019, 40, 1786-1798.	3.6	61
28	Multi-center mapping of human ocular dominance columns with BOLD fMRI. Journal of Vision, 2019, 19, 64b.	0.3	0
29	Topographic maps of visual space in the human cerebellum. Journal of Vision, 2019, 19, 307.	0.3	О
30	Mapping and characterization of positive and negative BOLD responses to visual stimulation in multiple brain regions at 7T. Human Brain Mapping, 2018, 39, 2426-2441.	3.6	27
31	Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topography, 2018, 31, 513-545.	1.8	38
32	Distortion-matched T1 maps and unbiased T1-weighted images as anatomical reference for high-resolution fMRI. NeuroImage, 2018, 176, 41-55.	4.2	32
33	Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI. Neurolmage, 2018, 172, 1-8.	4.2	18
34	Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function. Neurolmage, 2018, 168, 345-357.	4.2	151
35	High spatioâ€temporal resolution in functional MRI with 3D echo planar imaging using cylindrical excitation and a CAIPIRINHA undersampling pattern. Magnetic Resonance in Medicine, 2018, 79, 2589-2596.	3.0	7
36	Representations of time in human frontoparietal cortex. Communications Biology, 2018, 1, 233.	4.4	35

#	Article	IF	Citations
37	Functional organization of face processing in the human superior temporal sulcus: a 7T high-resolution fMRI study. Social Cognitive and Affective Neuroscience, 2018, 13, 102-113.	3.0	38
38	Examples of sub-millimeter, 7T, T1-weighted EPI datasets acquired with the T123DEPI sequence. Data in Brief, 2018, 20, 415-418.	1.0	4
39	Chronotopic maps in human premotor cortex. Journal of Vision, 2018, 18, 963.	0.3	O
40	Sustained enhancements in inhibitory control depend primarily on the reinforcement of fronto-basal anatomical connectivity. Brain Structure and Function, 2017, 222, 635-643.	2.3	17
41	High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus. Brain Topography, 2017, 30, 685-697.	1.8	20
42	Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study. NeuroImage, 2017, 159, 473-487.	4.2	59
43	Comparing functional <scp>MRI</scp> protocols for small, ironâ€rich basal ganglia nuclei such as the subthalamic nucleus at 7 <scp>T</scp> and 3 <scp>T</scp> . Human Brain Mapping, 2017, 38, 3226-3248.	3.6	76
44	Influence of physiological noise on accelerated 2D and 3D resting state functional MRI data at 7 T. Magnetic Resonance in Medicine, 2017, 78, 888-896.	3.0	34
45	Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain, 2017, 140, 2993-3011.	7.6	78
46	Retinotopic encoding of the Ternus-Pikler display reflected in the early visual areas. Journal of Vision, 2016, 16, 26.	0.3	6
47	Threeâ€dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI. Magnetic Resonance in Medicine, 2016, 75, 2350-2361.	3.0	53
48	Neural decoding of discriminative auditory object features depends on their socio-affective valence. Social Cognitive and Affective Neuroscience, 2016, 11, 1638-1649.	3.0	26
49	Recent applications of UHFâ€MRI in the study of human brain function and structure: a review. NMR in Biomedicine, 2016, 29, 1274-1288.	2.8	81
50	Ballistocardiogram artifact correction taking into account physiological signal preservation in simultaneous EEG-fMRI. Neurolmage, 2016, 135, 45-63.	4.2	39
51	Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field: feasibility and first results. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 605-616.	2.0	19
52	Differential patterns of functional and structural plasticity within and between inferior frontal gyri support trainingâ€induced improvements in inhibitory control proficiency. Human Brain Mapping, 2015, 36, 2527-2543.	3.6	57
53	Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI. PLoS ONE, 2015, 10, e0124072.	2.5	5
54	Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI. PLoS ONE, 2015, 10, e0134610.	2.5	14

#	Article	IF	CITATIONS
55	Distinct contributions of Brodmann areas 1 and 2 to body ownership. Social Cognitive and Affective Neuroscience, 2015, 10, 1449-1459.	3.0	22
56	Tonotopic Gradients in Human Primary Auditory Cortex: Concurring Evidence From High-Resolution 7ÂT and 3ÂT fMRI. Brain Topography, 2015, 28, 66-69.	1.8	26
57	Physiological noise in human cerebellar fMRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2015, 28, 485-492.	2.0	14
58	Towards high-quality simultaneous EEG-fMRI at 7 T: Detection and reduction of EEG artifacts due to head motion. Neurolmage, 2015, 120, 143-153.	4.2	53
59	Simultaneous EEG–fMRI at ultra-high field: Artifact prevention and safety assessment. NeuroImage, 2015, 105, 132-144.	4.2	63
60	EEG and fMRI correlates of non-retinotopic motion processing in the human visual system. Journal of Vision, 2015, 15, 1183.	0.3	0
61	Improved temporal resolution for functional studies with reduced number of segments with threeâ€dimensional echo planar imaging. Magnetic Resonance in Medicine, 2014, 72, 786-792.	3.0	9
62	Human finger somatotopy in areas 3b, 1 , and 2 : A 7T fMRI study using a natural stimulus. Human Brain Mapping, 2014, 35, 213-226.	3.6	182
63	Comparison of an 8-Channel and a 32-Channel Coil for High-Resolution fMRI at 7ÂT. Brain Topography, 2014, 27, 209-212.	1.8	22
64	A novel manipulation method of human body ownership using an fMRI-compatible master–slave system. Journal of Neuroscience Methods, 2014, 235, 25-34.	2.5	22
65	EEG–fMRI integration for the study of human brain function. Neurolmage, 2014, 102, 24-34.	4.2	117
66	Digit somatotopy in the human cerebellum: A 7T fMRI study. NeuroImage, 2013, 67, 354-362.	4.2	44
67	Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex. Journal of Neuroscience, 2013, 33, 1858-1863.	3.6	76
68	Signal fluctuations in fMRI data acquired with 2D-EPI and 3D-EPI at 7 Tesla. Magnetic Resonance Imaging, 2013, 31, 212-220.	1.8	60
69	In vivo Structural Imaging of the Cerebellum, the Contribution of Ultra-High Fields. Cerebellum, 2012, 11, 384-391.	2.5	15
70	A 7 Tesla fMRI Study of Amygdala Responses to Fearful Faces. Brain Topography, 2012, 25, 125-128.	1.8	32
71	Temporal SNR characteristics in segmented 3Dâ€EPI at 7T. Magnetic Resonance in Medicine, 2012, 67, 344-352.	3.0	64
72	Where sound position influences sound object representations: A 7-T fMRI study. NeuroImage, 2011, 54, 1803-1811.	4.2	38

#	Article	IF	CITATIONS
73	Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus. Journal of Neuroscience, 2011, 31, 14067-14075.	3.6	245
74	Eddy current effects on a clinical 7T-68Âcm bore scanner. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2010, 23, 39-43.	2.0	11
75	Cerebellar Cortical Layers: In Vivo Visualization with Structural High-Field-Strength MR Imaging. Radiology, 2010, 254, 942-948.	7. 3	66
76	MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neurolmage, 2010, 49, 1271-1281.	4.2	1,075
77	Minimization of Nyquist ghosting for echoâ€planar imaging at ultraâ€high fields based on a "negative readout gradient―strategy. Journal of Magnetic Resonance Imaging, 2009, 30, 1171-1178.	3.4	31
78	In vivo measurement of glycine with short echo-time 1H MRS in human brain at 7 T. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 1-4.	2.0	42
79	Investigation of high-resolution functional magnetic resonance imaging by means of surface and array radiofrequency coils at 7 T. Magnetic Resonance Imaging, 2009, 27, 1011-1018.	1.8	26
80	fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes. NeuroImage, 2009, 47, 1425-1434.	4.2	240
81	High resolution SE-fMRI in humans at 3 and 7 T using a motor task. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 113-120.	2.0	20
82	Comparison of three commercially available radio frequency coils for human brain imaging at 3 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 53-61.	2.0	13
83	Improved echo volumar imaging (EVI) for functional MRI. Magnetic Resonance in Medicine, 2006, 56, 1320-1327.	3.0	36