List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8724039/publications.pdf Version: 2024-02-01

FSTED VA:ZOUEZ

#	Article	IF	CITATIONS
1	Signal conditioning circuit for gel strain sensors. Smart Materials and Structures, 2022, 31, 015020.	1.8	4
2	Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation. Separation and Purification Technology, 2022, 289, 120638.	3.9	8
3	Is airborne graphene oxide a possible hazard for the sexual reproduction of wind-pollinated plants?. Science of the Total Environment, 2022, 830, 154625.	3.9	5
4	Hydrogel-based soft pneumatic bending actuator with self-healing and proprioception capabilities. , 2022, , .		1
5	Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Scientific Reports, 2022, 12, 7664.	1.6	11
6	Subchronic Graphene Exposure Reshapes Skin Cell Metabolism. Journal of Proteome Research, 2022, 21, 1675-1685.	1.8	3
7	SERS-Based Methodology for the Quantification of Ultratrace Graphene Oxide in Water Samples. Environmental Science & Technology, 2022, 56, 9527-9535.	4.6	3
8	Quasi-Static FEA Model for a Multi-Material Soft Pneumatic Actuator in SOFA. IEEE Robotics and Automation Letters, 2022, 7, 7391-7398.	3.3	2
9	A novel hydrogel-based connection mechanism for soft modular robots. , 2022, , .		Ο
10	Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene. Journal of Hazardous Materials, 2021, 414, 125553.	6.5	17
11	The lipid composition of few layers graphene and graphene oxide biomolecular corona. Carbon, 2021, 185, 591-598.	5.4	11
12	Mechanochemical preparation of piezoelectric nanomaterials: BN, MoS ₂ and WS ₂ 2D materials and their glycine-cocrystals. Nanoscale Horizons, 2020, 5, 331-335.	4.1	21
13	Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale, 2020, 12, 610-622.	2.8	42
14	Tailored Methodology Based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 1269-1278.	2.6	31
15	Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications. Carbon, 2020, 159, 598-610.	5.4	16
16	Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Applied Materials Today, 2020, 21, 100806.	2.3	23
17	Onâ€Demand Hydrophobic Drug Release Based on Microwaveâ€Responsive Graphene Hydrogel Scaffolds. Chemistry - A European Journal, 2020, 26, 17069-17080.	1.7	10
18	Sublethal exposure of small few-layer graphene promotes metabolic alterations in human skin cells. Scientific Reports, 2020, 10, 18407.	1.6	15

#	Article	IF	CITATIONS
19	Effects of Few-Layer Graphene on the Sexual Reproduction of Seed Plants: An In Vivo Study with Cucurbita pepo L Nanomaterials, 2020, 10, 1877.	1.9	5
20	Partial Reversibility of the Cytotoxic Effect Induced by Graphene-Based Materials in Skin Keratinocytes. Nanomaterials, 2020, 10, 1602.	1.9	8
21	Concentration Gradientâ€Based Soft Robotics: Hydrogels Out of Water. Advanced Functional Materials, 2020, 30, 2004417.	7.8	35
22	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	1.8	29
23	Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model. Materials Today Bio, 2020, 6, 100050.	2.6	22
24	Stimuli-responsive graphene-based hydrogel driven by disruption of triazine hydrophobic interactions. Nanoscale, 2020, 12, 7072-7081.	2.8	11
25	Microwave-assisted functionalization of carbon nanohorns with oligothiophene units with SERS activity. Chemical Communications, 2020, 56, 8948-8951.	2.2	2
26	Few Layer Graphene Does Not Affect Cellular Homeostasis of Mouse Macrophages. Nanomaterials, 2020, 10, 228.	1.9	15
27	Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Advanced Biology, 2020, 4, 1900233.	3.0	12
28	Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. Journal of Hazardous Materials, 2020, 393, 122380.	6.5	14
29	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
30	Conjugation with carbon nanotubes improves the performance of mesoporous silicon as Li-ion battery anode. Scientific Reports, 2020, 10, 5589.	1.6	31
31	Molecular adsorption of iminotriazine derivatives on graphene. JPhys Materials, 2020, 3, 034011.	1.8	4
32	A new soft fingertip based on electroactive hydrogels. , 2019, , .		3
33	Graphene-based materials do not impair physiology, gene expression and growth dynamics of the aeroterrestrial microalga <i>Trebouxia gelatinosa</i> . Nanotoxicology, 2019, 13, 492-509.	1.6	12
34	Physically Cross-Linked Hydrogel Based on Phenyl-1,3,5-triazine: Soft Scaffold with Aggregation-Induced Emission. ACS Macro Letters, 2019, 8, 1391-1395.	2.3	22
35	Modulation of waveguide behaviour of an ICT 2H-Benzo[d][1,2,3]Triazole derivative with graphene. Organic Electronics, 2019, 68, 1-8.	1.4	5
36	Few layer graphene does not affect the function and the autophagic activity of primary lymphocytes. Nanoscale, 2019, 11, 10493-10503.	2.8	8

#	Article	IF	CITATIONS
37	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	5.2	37
38	Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels. Nanoscale, 2019, 11, 4822-4830.	2.8	26
39	Experimental, Numerical, and Analytical Study on The Effect of Graphene Oxide in The Mechanical Properties of a Solvent-Free Reinforced Epoxy Resin. Polymers, 2019, 11, 2115.	2.0	9
40	Production of ready-to-use few-layer graphene in aqueous suspensions. Nature Protocols, 2018, 13, 495-506.	5.5	62
41	Smart Hybrid Graphene Hydrogels: A Study of the Different Responses to Mechanical Stretching Stimulus. ACS Applied Materials & Interfaces, 2018, 10, 1987-1995.	4.0	53
42	Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity. 2D Materials, 2018, 5, 035014.	2.0	12
43	Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS Applied Materials & amp; Interfaces, 2018, 10, 43904-43914.	4.0	45
44	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
45	Sweet graphene: exfoliation of graphite and preparation of glucose-graphene cocrystals through mechanochemical treatments. Green Chemistry, 2018, 20, 3581-3592.	4.6	56
46	Degradation of Single‣ayer and Few‣ayer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie, 2018, 130, 11896-11901.	1.6	9
47	Degradation of Single‣ayer and Few‣ayer Graphene by Neutrophil Myeloperoxidase. Angewandte Chemie - International Edition, 2018, 57, 11722-11727.	7.2	135
48	Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small, 2018, 14, e1800227.	5.2	42
49	Graphene Quantum Dot–Aerogel: From Nanoscopic to Macroscopic Fluorescent Materials. Sensing Polyaromatic Compounds in Water. ACS Applied Materials & Interfaces, 2018, 10, 18192-18201.	4.0	48
50	Advantageous Microwave-Assisted Suzuki Polycondensation for the Synthesis of Aniline-Fluorene Alternate Copolymers as Molecular Model with Solvent Sensing Properties. Polymers, 2018, 10, 215.	2.0	14
51	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	4.5	47
52	Differential effects of graphene materials on the metabolism and function of human skin cells. Nanoscale, 2018, 10, 11604-11615.	2.8	44
53	Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes: the role of xanthine oxidase and NADH dehydrogenase. Nanoscale, 2018, 10, 11820-11830.	2.8	90
54	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie - International Edition, 2017, 56, 3014-3019.	7.2	59

#	Article	IF	CITATIONS
55	Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Scientific Reports, 2017, 7, 40572.	1.6	141
56	Few‣ayer Graphene Kills Selectively Tumor Cells from Myelomonocytic Leukemia Patients. Angewandte Chemie, 2017, 129, 3060-3065.	1.6	9
57	Gold nanoparticles as analytical tools for the quantification of small quantities of triazine derivatives anchored on graphene in water dispersions. RSC Advances, 2017, 7, 21982-21987.	1.7	2
58	Targeted killing of prostate cancer cells using antibody–drug conjugated carbon nanohorns. Journal of Materials Chemistry B, 2017, 5, 8821-8832.	2.9	20
59	Graphene Improves the Biocompatibility of Polyacrylamide Hydrogels: 3D Polymeric Scaffolds for Neuronal Growth. Scientific Reports, 2017, 7, 10942.	1.6	87
60	Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews, 2017, 46, 4400-4416.	18.7	564
61	Carbon Nanohorns Modified with Conjugated Terthienyl/Terthiophene Structures: Additives to Enhance the Performance of Dye-Sensitized Solar Cells. Nanomaterials, 2017, 7, 294.	1.9	4
62	Triazine arbon Nanotubes: New Platforms for the Design of Flavin Receptors. Chemistry - A European Journal, 2016, 22, 8879-8888.	1.7	2
63	Production and stability of mechanochemically exfoliated graphene in water and culture media. Nanoscale, 2016, 8, 14548-14555.	2.8	46
64	Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca ²⁺ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano, 2016, 10, 7154-7171.	7.3	124
65	Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano, 2016, 10, 4459-4471.	7.3	133
66	Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale, 2016, 8, 8749-8760.	2.8	37
67	Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment. Nano Letters, 2016, 16, 3514-3518.	4.5	39
68	Design of Assembled Systems Based on Conjugated Polyphenylene Derivatives and Carbon Nanohorns. Chemistry - A European Journal, 2016, 22, 11643-11651.	1.7	4
69	Stability of melamine-exfoliated graphene in aqueous media: quantum-mechanical insights at the nanoscale. Physical Chemistry Chemical Physics, 2016, 18, 22203-22209.	1.3	16
70	Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano, 2016, 10, 615-623.	7.3	208
71	Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production. PLoS ONE, 2016, 11, e0166816.	1.1	84
72	Dispersibilityâ€Dependent Biodegradation of Graphene Oxide by Myeloperoxidase. Small, 2015, 11, 3985-3994.	5.2	215

#	Article	IF	CITATIONS
73	Nanocomposite Hydrogels: 3D Polymer–Nanoparticle Synergies for On-Demand Drug Delivery. ACS Nano, 2015, 9, 4686-4697.	7.3	624
74	Non-conventional methods and media for the activation and manipulation of carbon nanoforms. Chemical Society Reviews, 2014, 43, 58-69.	18.7	76
75	Grapheneâ€Based Electroresponsive Scaffolds as Polymeric Implants for Onâ€Demand Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1334-1343.	3.9	134
76	Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene <i>via</i> Selective Noncovalent Interactions. ACS Nano, 2014, 8, 563-571.	7.3	241
77	Carbon nanohorns as alternative gene delivery vectors. RSC Advances, 2014, 4, 27315.	1.7	19
78	Selective suspension of single layer graphene mechanochemically exfoliated from carbon nanofibres. Nano Research, 2014, 7, 963-972.	5.8	73
79	Classification Framework for Grapheneâ€Based Materials. Angewandte Chemie - International Edition, 2014, 53, 7714-7718.	7.2	369
80	Carbon Nanohorns as Integrative Materials for Efficient Dye‧ensitized Solar Cells. Advanced Materials, 2013, 25, 6513-6518.	11.1	46
81	Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization. Topics in Current Chemistry, 2013, 350, 65-109.	4.0	10
82	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie - International Edition, 2013, 52, 6480-6483.	7.2	33
83	Organic Functionalization of Graphene in Dispersions. Accounts of Chemical Research, 2013, 46, 138-148.	7.6	229
84	An Atomâ€Economical Approach to Functionalized Singleâ€Walled Carbon Nanotubes: Reaction with Disulfides. Angewandte Chemie, 2013, 125, 6608-6611.	1.6	5
85	Synthesis and Characterization of Highly Water-Soluble Dendrofulleropyrrolidine Bisadducts with DNA Binding Activity. Organic Letters, 2012, 14, 4450-4453.	2.4	8
86	Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorn delivered siRNA. Biomaterials, 2012, 33, 8152-8159.	5.7	45
87	Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon, 2012, 50, 2832-2844.	5.4	58
88	Few-layer graphenes from ball-milling of graphite with melamine. Chemical Communications, 2011, 47, 10936.	2.2	299
89	Ballâ€Milling Modification of Singleâ€Walled Carbon Nanotubes: Purification, Cutting, and Functionalization. Small, 2011, 7, 665-674.	5.2	60
90	Synthesis and Spectroscopic Properties of Porphyrin Derivatives of C60. Molecular Crystals and Liquid Crystals, 2010, 521, 253-264.	0.4	3

#	Article	IF	CITATIONS
91	Photoluminescence and Electro-Optic Kerr Effect in Porphyrin Derivatives of C60. Molecular Crystals and Liquid Crystals, 2010, 522, 191/[491]-202/[502].	0.4	0
92	Functionalization of carbon nanotubes for applications in materials science and nanomedicine. Pure and Applied Chemistry, 2010, 82, 853-861.	0.9	18
93	Versatile microwave-induced reactions for the multiple functionalization of carbon nanotubes. Organic and Biomolecular Chemistry, 2010, 8, 1936.	1.5	26
94	Carbon Nanotubes and Microwaves: Interactions, Responses, and Applications. ACS Nano, 2009, 3, 3819-3824.	7.3	270
95	Efficient functionalization of carbon nanohorns via microwave irradiation. Journal of Materials Chemistry, 2009, 19, 4407.	6.7	46
96	Synergy between microwave irradiation and heterogeneous catalysis in an environmentally friendly self-condensation of hydroxybenzene derivatives. Arkivoc, 2009, 2010, 264-273.	0.3	0
97	Microwave-Induced Multiple Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 8094-8100.	6.6	157
98	Photophysical, electrochemical, and mesomorphic properties of a liquid-crystalline [60]fullerene–peralkylated ferrocene dyad. Journal of Materials Chemistry, 2008, 18, 1504.	6.7	32
99	Microwave-Assisted Reactions in Heterocyclic Compounds with Applications in Medicinal and Supramolecular Chemistry. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 877-902.	0.6	47
100	Green and chemoselective oxidation of sulfides with sodium perborate and sodium percarbonate: nucleophilic and electrophilic character of the oxidation system. Green Chemistry, 2007, 9, 331-336.	4.6	70
101	Reversible Microwave-Assisted Cycloaddition of Aziridines to Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 14580-14581.	6.6	115
102	A dendritic fullerene–porphyrin dyad. Photochemical and Photobiological Sciences, 2006, 5, 1137-1141.	1.6	17
103	Liquid-Crystalline Bisadducts of [60]Fullerene. Journal of Organic Chemistry, 2006, 71, 7603-7610.	1.7	33
104	An Efficient One-Pot Synthesis of Phenol Derivatives by Ring Opening and Rearrangement of Diels-Alder Cycloadducts of Substituted Furans Using Heterogeneous Catalysis and Microwave Irradiation. Synlett, 2004, 2004, 1259-1263.	1.0	18
105	An Efficient One-Pot Synthesis of Phenol Derivatives by Ring Opening and Rearrangement of Diels—Alder Cycloadducts of Substituted Furans Using Heterogeneous Catalysis and Microwave Irradiation ChemInform, 2004, 35, no.	0.1	0
106	Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. Journal of Materials Chemistry, 2004, 14, 807-810.	6.7	89
107	Liquid-crystalline fullerene–ferrocene dyads. Journal of Materials Chemistry, 2004, 14, 1266-1272. 	6.7	90
108	Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs. Angewandte Chemie - International Edition, 2003, 42, 4206-4209	7.2	188

#	Article	IF	CITATIONS
109	Anion recognition by functionalized single wall carbon nanotubes. Chemical Communications, 2003, , 2576-2577.	2.2	35
110	Purification of HiPCO Carbon Nanotubes via Organic Functionalization. Journal of the American Chemical Society, 2002, 124, 14318-14319.	6.6	210
111	Microwave-assisted purification of HIPCO carbon nanotubes. Chemical Communications, 2002, , 2308-2309.	2.2	59
112	Synthesis and Molecular Modeling Studies of Fullereneâ^'5,6,7-Trimethoxyindoleâ^'Oligonucleotide Conjugates as Possible Probes for Study of Photochemical Reactions in DNA Triple Helices. European Journal of Organic Chemistry, 2002, 2002, 405-413.	1.2	26
113	Design, synthesis and biological properties of fulleropyrrolidine derivatives as potential DNA photo-probes. Journal of Supramolecular Chemistry, 2002, 2, 327-334.	0.4	10
114	Preparation of α- and β-substituted alanine derivatives by α-amidoalkylation or Michael addition reactions under heterogeneous catalysis assisted by microwave irradiation. Tetrahedron, 2001, 57, 5421-5428.	1.0	36
115	Tandem Dielsâ^'Alder Aromatization Reactions of Furans under Unconventional Reaction Conditions â^' Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2001, 2001, 2891.	1.2	32
116	Novel Versatile Fullerene Synthons. Journal of Organic Chemistry, 2001, 66, 4915-4920.	1.7	136
117	Synergy between Heterogeneous Catalysis and Microwave Irradiation in an Efficient One-Pot Synthesis of Benzene Derivatives via Ring-Opening of Diels-Alder Cycloadducts of Substituted Furans. Synlett, 2001, 2001, 0753-0756.	1.0	18
118	Use of Microwave Irradiation and Solid Acid Catalysts in an Enhanced and Environmentally Friendly Synthesis of Coumarin Derivatives. Synlett, 1999, 1999, 608-610.	1.0	68
119	Heck Reactions under Microwave Irradiation in Solvent-Free Conditions. Synlett, 1997, 1997, 269-270.	1.0	41