Marta S P Carepo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8723569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae. Journal of Bacteriology, 2005, 187, 5568-5577.	1.0	289
2	170 ENDOR Detection of a Solvent-Derived Niâ^'(OHx)â^'Fe Bridge That Is Lost upon Activation of the Hydrogenase from Desulfovibrio gigas. Journal of the American Chemical Society, 2002, 124, 281-286.	6.6	132
3	57Fe Q-Band Pulsed ENDOR of the Hetero-Dinuclear Site of Nickel Hydrogenase:Â Comparison of the NiA, NiB, and NiC States. Journal of the American Chemical Society, 1997, 119, 9291-9292.	6.6	103
4	Genome Sequence of Exiguobacterium antarcticum B7, Isolated from a Biofilm in Ginger Lake, King George Island, Antarctica. Journal of Bacteriology, 2012, 194, 6689-6690.	1.0	60
5	Isolation and Characterisation of a Novel Sulphate-reducing Bacterium of theDesulfovibrioGenus. Anaerobe, 1998, 4, 117-130.	1.0	53
6	Source and reduction of nitrous oxide. Coordination Chemistry Reviews, 2019, 387, 436-449.	9.5	53
7	Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)—comparative study with D. vulgaris and D. gigas species. Anaerobe, 2002, 8, 325-332.	1.0	32
8	Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genetics and Molecular Research, 2004, 3, 181-94.	0.3	30
9	Molybdenum Induces the Expression of a Protein Containing a New Heterometallic Mo-Fe Cluster in <i>Desulfovibrio alaskensis</i> . Biochemistry, 2009, 48, 873-882.	1.2	25
10	Hydroxyl Radical Generation and DNA Nuclease Activity: A Mechanistic Study Based on a Surfaceâ€Immobilized Copper Thioether Clipâ€Phen Derivative. Chemistry - A European Journal, 2016, 22, 10081-10089.	1.7	23
11	Mo–Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas. Journal of Biological Inorganic Chemistry, 2014, 19, 605-614.	1.1	22
12	Omics profiles used to evaluate the gene expression of Exiguobacterium antarcticum B7 during cold adaptation. BMC Genomics, 2014, 15, 986.	1.2	21
13	NMR assignment of the apo-form of a Desulfovibrio gigas protein containing a novel Mo–Cu cluster. Biomolecular NMR Assignments, 2007, 1, 81-83.	0.4	16
14	Chromobacterium violaceum: Important Insights for Virulence and Biotechnological Potential by Exoproteomic Studies. Current Microbiology, 2013, 67, 100-106.	1.0	16
15	Incorporation of molybdenum in rubredoxin: models for mononuclear molybdenum enzymes. Journal of Biological Inorganic Chemistry, 2015, 20, 821-829.	1.1	12
16	A spectroelectrochemical investigation of the hemeâ€based sensor DevSÂfrom <i>MycobacteriumÂtuberculosis</i> : a redox <i>versus</i> oxygen sensor. FEBS Journal, 2019, 286, 4278-4293.	2.2	11
17	Ascorbyl and hydroxyl radical generation mediated by a copper complex adsorbed on gold. Dalton Transactions, 2019, 48, 14128-14137.	1.6	11
18	Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472. Canadian Journal of Microbiology, 2008, 54, 137-142.	0.8	10

MARTA S P CAREPO

#	Article	IF	CITATIONS
19	The Heme-Based Oxygen Sensor Rhizobium etli FixL: Influence of Auxiliary Ligands on Heme Redox Potential and Implications on the Enzyme Activity. Journal of Inorganic Biochemistry, 2016, 164, 34-41.	1.5	10
20	Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coordination Chemistry Reviews, 2020, 423, 213476.	9.5	8
21	Rearrangement of Moâ€Cuâ€S Cluster Reflects the Structural Âłnstability of Orange Protein Cofactor. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1361-1364.	0.6	7
22	Magnetic nanoparticles as a support for a copper (II) complex with nuclease activity. Journal of Inorganic Biochemistry, 2018, 186, 294-300.	1.5	7
23	Insights into signal transduction by a hybrid FixL: Denaturation study of on and off states of a multi-domain oxygen sensor. Journal of Inorganic Biochemistry, 2017, 172, 129-137.	1.5	6
24	Proteomics Analysis of the Effects of Cyanate on Chromobacterium violaceum Metabolism. Genes, 2011, 2, 736-747.	1.0	5
25	ArsC3 from Desulfovibrio alaskensis G20, a cation and sulfate-independent highly efficient arsenate reductase. Journal of Biological Inorganic Chemistry, 2014, 19, 1277-1285.	1.1	5
26	Exposure to an extremely low-frequency electromagnetic field only slightly modifies the proteome of Chromobacterium violaceum ATCC 12472. Genetics and Molecular Biology, 2015, 38, 227-230.	0.6	5
27	Reconstruction of the Fatty Acid Biosynthetic Pathway ofExiguobacterium antarcticumB7 Based on Genomic and Bibliomic Data. BioMed Research International, 2016, 2016, 1-9.	0.9	5
28	Orange protein from Desulfovibrio alaskensis G20: insights into the Mo–Cu cluster protein-assisted synthesis. Journal of Biological Inorganic Chemistry, 2016, 21, 53-62.	1.1	5
29	Resonance assignment of DVU2108 that is part of the Orange Protein complex in Desulfovibrio vulgaris Hildenborough. Biomolecular NMR Assignments, 2016, 10, 117-120.	0.4	5
30	Ligand accessibility to heme cytochrome b5 coordinating sphere and enzymatic activity enhancement upon tyrosine ionization. Journal of Biological Inorganic Chemistry, 2019, 24, 317-330.	1.1	4
31	Isolation and characterization of a new Cu–Fe protein from Desulfovibrio aminophilus DSM12254. Journal of Inorganic Biochemistry, 2009, 103, 1314-1322.	1.5	3
32	De novo synthesis of fatty acids is regulated by FapR protein in Exiguobacterium antarcticum B7, a psychrotrophic bacterium isolated from Antarctica. BMC Research Notes, 2016, 9, 447.	0.6	3
33	Fluorescence anisotropy of fluorescein derivative varies according to pH: Lessons for binding studies. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 59-62.	2.0	3
34	Structural redox control in a 7Fe ferredoxin isolated from Desulfovibrio alaskensis. Bioelectrochemistry, 2011, 82, 22-28.	2.4	2
35	Vestigialization of arsenic resistance phenotypes/genotypes inChromobacterium violaceumstrains thriving in pristine Brazilian sites. Biocatalysis and Biotransformation, 2013, 31, 281-291.	1.1	2
36	Small phospho-donors phosphorylate MorR without inducing protein conformational changes. Biophysical Chemistry, 2018, 240, 25-33.	1.5	1

#	ARTICLE	IF	CITATIONS
37	Effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin. Journal of Biological Inorganic Chemistry, 2019, 24, 171-178.	1.1	1
38	5. The Tetranuclear Copper-Sulfide Center of Nitrous Oxide Reductase. , 2020, 20, 139-164.		1
39	The application of low angle light scattering to evaluate qualitatively and quantitatively the dynamics of formation of oligomers in heme protein sensors. , 2016, , .		0