Daisuke Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8723498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boronic-Acid-Catalyzed Regioselective and 1,2- <i>cis</i> -Stereoselective Glycosylation of Unprotected Sugar Acceptors via S _N i-Type Mechanism. Journal of the American Chemical Society, 2018, 140, 3644-3651.	13.7	98
2	Regioselective and 1,2â€ <i>cis</i> â€Î±â€Stereoselective Glycosylation Utilizing Glycosylâ€Acceptorâ€Derived Boronic Ester Catalyst. Angewandte Chemie - International Edition, 2015, 54, 10935-10939.	13.8	84
3	Glycosyl-Acceptor-Derived Borinic Ester-Promoted Direct and \hat{l}^2 -Stereoselective Mannosylation with a 1,2-Anhydromannose Donor. Organic Letters, 2016, 18, 2288-2291.	4.6	79
4	Efficient Stereoselective Synthesis of γ-N-Glycosyl Asparagines by N-Glycosylation of Primary Amide Groups. Journal of the American Chemical Society, 2005, 127, 1630-1631.	13.7	77
5	Stereocontrolled Photoinduced Glycosylation Using an Aryl Thiourea as an Organo photoacid. Organic Letters, 2016, 18, 3190-3193.	4.6	71
6	Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. coli O75. Chemical Communications, 2017, 53, 3018-3021.	4.1	66
7	Chiral BrÃ,nsted Acid Mediated Glycosylation with Recognition of Alcohol Chirality. Angewandte Chemie - International Edition, 2013, 52, 12131-12134.	13.8	62
8	Systematic synthesis of low-molecular weight fucoidan derivatives and their effect on cancer cells. Organic and Biomolecular Chemistry, 2015, 13, 10556-10568.	2.8	58
9	Target-selective photo-degradation of HIV-1 protease by a fullerene-sugar hybrid. Chemical Communications, 2008, , 5767.	4.1	56
10	Photo-degradation of amyloid β by a designed fullerene–sugar hybrid. MedChemComm, 2010, 1, 212.	3.4	53
11	Stereospecific βâ€ <scp>l</scp> â€Rhamnopyranosylation through an S _N iâ€Type Mechanism by Using Organoboron Reagents. Angewandte Chemie - International Edition, 2018, 57, 13858-13862.	13.8	51
12	1,2- <i>cis</i> -α-Stereoselective Glycosylation Utilizing a Glycosyl-Acceptor-Derived Borinic Ester and Its Application to the Total Synthesis of Natural Glycosphingolipids. Organic Letters, 2016, 18, 5030-5033.	4.6	50
13	Photo-induced glycosylation using reusable organophotoacids. Chemical Communications, 2014, 50, 10695-10698.	4.1	46
14	Photodegradation of amyloid \hat{l}^2 and reduction of its cytotoxicity to PC12 cells using porphyrin derivatives. Chemical Communications, 2014, 50, 9543-9546.	4.1	44
15	Inhibition of Amyloid β Aggregation and Cytotoxicity by Photodegradation Using a Designed Fullerene Derivative. Chemistry - an Asian Journal, 2011, 6, 2312-2315.	3.3	43
16	Systematic and Stereoselective Total Synthesis of Mannosylerythritol Lipids and Evaluation of Their Antibacterial Activity. Journal of Organic Chemistry, 2018, 83, 7281-7289.	3.2	43
17	Stereoselective Synthesis of Oligo-α(2,8)-3-deoxy-D-manno-2-octulosonic Acid Derivatives. Angewandte Chemie - International Edition, 2006, 45, 770-773.	13.8	40
18	Light-induced O-glycosylation of unprotected deoxythioglycosyl donors. Organic and Biomolecular Chemistry, 2013, 11, 5079.	2.8	37

DAISUKE TAKAHASHI

#	Article	IF	CITATIONS
19	Novel 1,2- cis -stereoselective glycosylations utilizing organoboron reagents and their application to natural products and complex oligosaccharide synthesis. Carbohydrate Research, 2017, 452, 64-77.	2.3	33
20	Involvement of DNA binding domain in the cellular stability and importin affinity of NF-κB component RelB. Organic and Biomolecular Chemistry, 2012, 10, 3053.	2.8	25
21	Total Synthesis of Vineomycin B ₂ . Journal of the American Chemical Society, 2013, 135, 15909-15912.	13.7	25
22	Total Synthesis of Incednam, the Aglycon of Incednine. Organic Letters, 2010, 12, 5068-5071.	4.6	24
23	Targetâ€Selective Photodegradation of HIVâ€1 Protease and Inhibition of HIVâ€1 Replication in Living Cells by Designed Fullerene–Sugar Hybrids. Chemistry - an Asian Journal, 2012, 7, 911-914.	3.3	24
24	Diastereoselective desymmetric 1,2-cis-glycosylation of meso-diols via chirality transfer from a glycosyl donor. Nature Communications, 2020, 11, 2431.	12.8	24
25	Photodegradation of Target Oligosaccharides by Lightâ€Activated Small Molecules. Angewandte Chemie - International Edition, 2010, 49, 10096-10100.	13.8	22
26	Chemical methods for degradation of target proteins using designed light-activatable organic molecules. Chemical Communications, 2012, 48, 7659.	4.1	21
27	Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone–sialic acid hybrids. Chemical Communications, 2013, 49, 1169.	4.1	20
28	Synthesis of 2,3,6-Trideoxysugar-Containing Disaccharides by Cyclization and Glycosidation through the Sequential Activation of Sulfoxide and Methylsulfanyl Groups in a One-Pot Procedure. Angewandte Chemie - International Edition, 2003, 42, 1833-1836.	13.8	19
29	Diboron-Catalyzed Regio- and 1,2- <i>cis</i> -α-Stereoselective Glycosylation of <i>trans</i> -1,2-Diols. Journal of Organic Chemistry, 2020, 85, 16254-16262.	3.2	19
30	The direct and one-pot transformation of xylan into the biodegradable surfactants, alkyl xylosides, is aided by an ionic liquid. RSC Advances, 2013, 3, 19756.	3.6	17
31	Systematic synthesis of sulfated oligofucosides and their effect on breast cancer MCF-7 cells. Chemical Communications, 2014, 50, 9831-9834.	4.1	17
32	Glycosylations of Glycals using <i>N</i> -lodosuccinimide (NIS) and Phosphorus Compounds for Syntheses of 2-lodo- and 2-Deoxyglycosides. Journal of Organic Chemistry, 2015, 80, 9552-9562.	3.2	16
33	Chiral BrÃ,nsted Acid Mediated Glycosylation with Recognition of Alcohol Chirality. Angewandte Chemie, 2013, 125, 12353-12356.	2.0	15
34	Effective and chemoselective glycosylations using 2,3-unsaturated sugars. Organic and Biomolecular Chemistry, 2010, 8, 3164.	2.8	14
35	A novel glycosylation of inactive glycosyl donors using an ionic liquid containing a protic acid under reduced pressure conditions. Tetrahedron Letters, 2010, 51, 6294-6297.	1.4	13
36	Target-selective photo-degradation of AFP-L3 and selective photo-cytotoxicity against HuH-7 hepatocarcinoma cells using an anthraquinone–PhoSL hybrid. Chemical Communications, 2016, 52, 2169-2172.	4.1	13

DAISUKE TAKAHASHI

#	Article	IF	CITATIONS
37	Stereospecific βâ€ <scp>l</scp> â€Rhamnopyranosylation through an S _N iâ€Type Mechanism by Using Organoboron Reagents. Angewandte Chemie, 2018, 130, 14054-14058.	2.0	13
38	Target-selective photodegradation of oligosaccharides by a fullerene–boronic acid hybrid upon visible light irradiation. Chemical Communications, 2011, 47, 11712.	4.1	12
39	Molecular design, chemical synthesis, and biological evaluation of agents that selectively photo-degrade the transcription factor estrogen receptor-α. Organic and Biomolecular Chemistry, 2011, 9, 6357.	2.8	12
40	Total Synthesis of Aquayamycin. Chemistry - A European Journal, 2016, 22, 18733-18736.	3.3	12
41	Targetâ€Selective Fluorescence Imaging and Photocytotoxicity against H ₂ O ₂ Highâ€Expressing Cancer Cells Using a Photoactivatable Theranostic Agent. Chemistry - an Asian Journal, 2017, 12, 2656-2659.	3.3	12
42	Improved total synthesis of incednam. Journal of Antibiotics, 2013, 66, 155-159.	2.0	11
43	Photo-induced glycosylation using a diaryldisulfide as an organo-Lewis photoacid catalyst. Organic and Biomolecular Chemistry, 2020, 18, 851-855.	2.8	11
44	Total Synthesis of Terpioside B. Chemistry - A European Journal, 2020, 26, 10222-10225.	3.3	11
45	Synthesis of block-graft polymers by anionic polymerizations. Macromolecular Rapid Communications, 2000, 21, 660-664.	3.9	10
46	Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone–boronic acid hybrids. Chemical Communications, 2012, 48, 7595.	4.1	10
47	Degradation of Target Oligosaccharides by Anthraquinone–Lectin Hybrids with Light Switching. Chemistry - an Asian Journal, 2012, 7, 97-104.	3.3	10
48	Design, synthesis and evaluation of a boronic acid based artificial receptor for <scp>l</scp> -DOPA in aqueous media. Chemical Communications, 2013, 49, 10403-10405.	4.1	10
49	Hierarchical CaCO ₃ Chromatography: A Stationary Phase Based on Biominerals. Chemistry - A European Journal, 2015, 21, 5034-5040.	3.3	10
50	Novel hemagglutinin-binding sulfated oligofucosides and their effect on influenza virus infection. Chemical Communications, 2018, 54, 7467-7470.	4.1	10
51	Armed–disarmed effect of remote protecting groups on the glycosylation reaction of 2,3-dideoxyglycosyl donors. Tetrahedron Letters, 2011, 52, 2399-2403.	1.4	9
52	Synthesis of a Pentasaccharide Repeating Unit of Lipopolysaccharide Derived from Virulent <i>E. coli</i> O1 and Identification of a Glycotope Candidate of Avian Pathogenic <i>E. coli</i> O1. Angewandte Chemie - International Edition, 2021, 60, 1789-1796.	13.8	9
53	Synthesis of low-molecular weight fucoidan derivatives and their binding abilities to SARS-CoV-2 spike proteins. RSC Medicinal Chemistry, 2021, 12, 2016-2021.	3.9	9
54	Selfâ€Assembling Properties and Recovery Effects on Damaged Skin Cells of Chemically Synthesized Mannosylerythritol Lipids. ChemBioChem, 2022, 23, .	2.6	9

DAISUKE TAKAHASHI

#	Article	IF	CITATIONS
55	Efficient and Stereoselective Synthesis of the Disaccharide Fragment of Incednine. Organic Letters, 2011, 13, 6126-6129.	4.6	8
56	Chemical methods for degradation of target oligosaccharides using designed light-activatable organic molecules. Chemical Communications, 2012, 48, 4397.	4.1	8
57	Target-selective photo-degradation of verotoxin-1 and reduction of its cytotoxicity to Vero cells using porphyrin–globotriose hybrids. Chemical Communications, 2013, 49, 6027.	4.1	8
58	Chemoselective glycosylations using 2,3-unsaturated-4-keto glycosyl donors. Organic and Biomolecular Chemistry, 2010, 8, 988.	2.8	7
59	A solid-phase affinity labeling method for target-selective isolation and modification of proteins. Chemical Communications, 2014, 50, 15601-15604.	4.1	7
60	Recent advances in boron-mediated aglycon delivery (BMAD) for the efficient synthesis of 1,2-cis glycosides. Carbohydrate Research, 2022, 518, 108579.	2.3	6
61	Chemical and biological evaluation of unusual sugars, α-aculosides, as novel Michael acceptors. Organic and Biomolecular Chemistry, 2014, 12, 8832-8835.	2.8	5
62	Hypocrellin B-based activatable photosensitizers for specific photodynamic effects against high H ₂ O ₂ -expressing cancer cells. Chemical Communications, 2021, 58, 242-245.	4.1	5
63	Targetâ€selective degradation of cancerâ€related proteins by novel photosensitizers for molecularâ€targeted photodynamic therapy. Cancer Science, 2009, 100, 1581-1584.	3.9	4
64	Carbohydrate recognition and photodegradation by an anthracene–Kemp's acid hybrid. Organic and Biomolecular Chemistry, 2012, 10, 8393.	2.8	4
65	Regioselective and Stereoselective Glycosylations Utilizing Organoboron Compounds. Trends in Glycoscience and Glycotechnology, 2018, 30, E55-E62.	0.1	4
66	Title is missing!. Angewandte Chemie, 2003, 115, 1877-1880.	2.0	3
67	Hydrolysis of Disaccharides by Metal Species in Neutral Homogeneous Solutions. Chemistry Letters, 2009, 38, 728-729.	1.3	3
68	Chemical approach for target-selective degradation of oligosaccharides using photoactivatable organic molecules. Glycoconjugate Journal, 2015, 32, 475-482.	2.7	3
69	An anthraquinone – enzyme – peptide hybrid as a photo-switchable enzyme. Chemical Communications, 2018, 54, 10614-10617.	4.1	3
70	Total Synthesis and Structure–Activity Relationship Study of Vineomycin A1. Journal of Organic Chemistry, 2019, 84, 14724-14732.	3.2	3
71	2â€Phenylquinoline–Sugar Hybrids as Photoswitchable αâ€Glucosidase Inhibitors. Chemistry - an Asian Journal, 2019, 14, 1409-1412.	3.3	3
72	One-pot Transformation of <i>N</i> -Succinyl Chitosan to Nitrogen-containing Alkyl Glycosides Using an Ionic Liquid Containing a Protic Acid. Chemistry Letters, 2015, 44, 1467-1469.	1.3	2

#	Article	IF	CITATIONS
73	Target-selective photo-degradation of a sialyl Lewis a (sLe ^a) conjugate and photo-cytotoxicity against sLe ^a positive cancer cells using an anthraquinone-antibody hybrid. MedChemComm, 2016, 7, 1224-1228.	3.4	2
74	2â€Naphthol Moiety of Neocarzinostatin Chromophore as a Novel Proteinâ€Photodegrading Agent and Its Application as a H2O2â€Activatable Photosensitizer. Chemistry - A European Journal, 2020, 26, 14351-14358.	3.3	2
75	Synthesis of a Pentasaccharide Repeating Unit of Lipopolysaccharide Derived from Virulent <i>E. coli</i> O1 and Identification of a Glycotope Candidate of Avian Pathogenic <i>E. coli</i> O1. Angewandte Chemie, 2021, 133, 1817-1824.	2.0	2
76	Boronic-Acid-Catalyzed Regioselective and Stereoselective Glycosylations <i>via</i> S _N i-Type Mechanism. Trends in Glycoscience and Glycotechnology, 2019, 31, SE93-SE94.	0.1	2
77	The Synthesis of Carbohydrate Microarrays by S-Alkylation of the Glass-supported 2-Bromoacetamides. Chemistry Letters, 2008, 37, 1252-1253.	1.3	1
78	Ionic Liquids as Green Solvents for Glycosylation Reactions. , 2012, , 67-78.		1
79	Direct and Stereoselective Synthesis of β-Mannosides by Anomeric <i>O</i> -Alkylation. Trends in Glycoscience and Glycotechnology, 2016, 28, E119-E120.	0.1	1
80	Synthesis of block-graft polymers by anionic polymerizations. , 2000, 21, 660.		1
81	Chemistry Based Approach for Degradation of Target-Oligosaccharides Using Photo-Activatable Organic Small Molecules. Trends in Glycoscience and Glycotechnology, 2012, 24, 258-276.	0.1	1
82	Borinic Acid Catalyzed 1,2-cis-Stereoselective Glycosylations and Their Applications to the Total Synthesis of Natural Products. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 470-473.	0.1	1
83	Efficient Strategy for the Preparation of Chemical Probes of Biologically Active Glycosides Using a Boron-Mediated Aglycon Delivery (BMAD) Method. Bulletin of the Chemical Society of Japan, 2022, 95, 1075-1082.	3.2	1
84	Creation of Novel Biofunctional Molecules for Target-Selective Photodegradation of Proteins and Carbohydrates: A Synthetic and Chemical Biological Study for the Post-Genome Era. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1187-1195.	0.1	0
85	Organoboron-Mediated Regio- and Stereoselective Glycosylation. Trends in Glycoscience and Glycotechnology, 2015, 27, 61-62.	0.1	0
86	Direct and Stereoselective Synthesis of β-Mannosides by Anomeric <i>O</i> -Alkylation. Trends in Glycoscience and Glycotechnology, 2016, 28, J117-J118.	0.1	0
87	Regioselective and Stereoselective Glycosylations Utilizing Organoboron Compounds. Trends in Glycoscience and Glycotechnology, 2018, 30, J31-J38.	0.1	0
88	Boronic-Acid-Catalyzed Regioselective and Stereoselective Glycosylations <i>via</i> S _N i-Type Mechanism. Trends in Glycoscience and Glycotechnology, 2019, 31, SJ93-SJ94.	0.1	0
89	Innenrücktitelbild: Synthesis of a Pentasaccharide Repeating Unit of Lipopolysaccharide Derived from Virulent <i>E. coli</i> O1 and Identification of a Glycotope Candidate of Avian Pathogenic <i>E. coli</i> O1 (Angew. Chem. 4/2021). Angewandte Chemie, 2021, 133, 2195-2195.	2.0	0
90	Development and Application of Boronic-Acid-Catalyzed Regioselective and 1,2-cis-Stereoselective Glycosylation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 221-231.	0.1	0