Surendra Nimesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8723230/publications.pdf

Version: 2024-02-01

185998 205818 2,519 71 28 48 citations h-index g-index papers 79 79 79 3936 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microbial Degradation of Organophosphate Pesticides: A Review. Pedosphere, 2018, 28, 190-208.	2.1	208
2	Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 83-91.	1.9	118
3	Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes. Green Chemistry, 2006, 8, 356.	4.6	114
4	Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum. Molecular Biotechnology, 2010, 46, 182-196.	1.3	107
5	Green synthesis of silver nanoparticles using <i>Prosopis juliflora</i> bark extract: reaction optimization, antimicrobial and catalytic activities. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 985-993.	1.9	102
6	Intracellular Trafficking and Decondensation Kinetics of Chitosan–pDNA Polyplexes. Molecular Therapy, 2010, 18, 1787-1795.	3.7	93
7	PEI-alginate nanocomposites as efficient in vitro gene transfection agents. Journal of Controlled Release, 2006, 114, 398-409.	4.8	92
8	Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. International Journal of Pharmaceutics, 2007, 337, 265-274.	2.6	85
9	Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 305-314.	1.9	85
10	Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using <i>Cordia dichotoma</i> leaf extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 045009.	0.7	81
11	An efficient synthesis of 1,5-benzadiazepine derivatives catalyzed by silver nitrate. Green Chemistry, 2006, 8, 519.	4.6	79
12	Cationic Polymer Based Nanocarriers for Delivery of Therapeutic Nucleic Acids. Journal of Biomedical Nanotechnology, 2011, 7, 504-520.	0.5	66
13	Antibacterial efficacy of silver nanoparticles synthesized employing <i>Terminalia arjuna </i> bark extract. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1192-1200.	1.9	58
14	Polyethylenimine as a Promising Vector for Targeted siRNA Delivery. Current Clinical Pharmacology, 2012, 7, 121-130.	0.2	57
15	PGMD/curcumin nanoparticles for the treatment of breast cancer. Scientific Reports, 2021, 11, 3824.	1.6	54
16	Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. Journal of Photochemistry and Photobiology B: Biology, 2019, 190, 50-58.	1.7	51
17	Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nano-catalyst from Cicer arietinum leaves. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 90-96.	1.7	50
18	Novel polyallylamine–dextran sulfate–DNA nanoplexes: Highly efficient non-viral vector for gene delivery. International Journal of Pharmaceutics, 2006, 320, 143-149.	2.6	48

#	Article	IF	CITATIONS
19	Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines. Nanotoxicology, 2017, 11, 223-235.	1.6	47
20	Guanidinium-grafted polyethylenimine: An efficient transfecting agent for mammalian cells. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 647-655.	2.0	45
21	Polyethylenimine nanoparticles as an efficient in vitro siRNA delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 43-49.	2.0	45
22	Preparation, characterization and in vitro drug release studies of novel polymeric nanoparticles. International Journal of Pharmaceutics, 2006, 323, 146-152.	2.6	43
23	Natural Plant Extracts as Potential Therapeutic Agents for the Treatment of Cancer. Current Topics in Medicinal Chemistry, 2016, 17, 96-106.	1.0	43
24	Bile Acid Oligomers and Their Combination with Antibiotics To Combat Bacterial Infections. Journal of Medicinal Chemistry, 2018, 61, 10265-10275.	2.9	38
25	An Effective Approach for Enhanced Oil Recovery Using Nickel Nanoparticles Assisted Polymer Flooding. Energy &	2.5	35
26	Current Status and Future Perspectives of Mass Spectrometry Imaging. International Journal of Molecular Sciences, 2013, 14, 11277-11301.	1.8	31
27	Hypochlorite-promoted inhibition of photo-induced electron transfer in phenothiazine–borondipyrromethene donor–acceptor dyad: a cost-effective and metal-free "turn-on― fluorescent chemosensor for hypochlorite. New Journal of Chemistry, 2017, 41, 5322-5333.	1.4	30
28	Antibacterial, anticancer and antioxidant potential of silver nanoparticles engineered using <i>Trigonella foenumâ€graecum </i> seed extract. IET Nanobiotechnology, 2018, 12, 526-533.	1.9	30
29	Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Single Domain Antibodies Are Potent Inhibitors of Low Density Lipoprotein Receptor Degradation. Journal of Biological Chemistry, 2016, 291, 16659-16671.	1.6	28
30	Synthesis and Physicochemical Characterization of Mesoporous <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>S</mml:mtext><mml:mtext>O<td>ml:mtext></td><td>< 126/mml:mrow</td></mml:mtext></mml:math>	ml:mtext>	< 126/mml:mrow
31	Hypochloriteâ€Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine–Boron dipyrromethene Electron Donor–Acceptor Dyad: A Highly Water Soluble "Turnâ€On―Fluorescent Probe for Hypochlorite. Chemistry - an Asian Journal, 2018, 13, 1594-1608.	1.7	25
32	Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine, 2011, 6, 729-746.	1.7	22
33	Phenotypic and virulence traits of <i>Escherichia coli </i> and <i> Salmonella </i> strains isolated from vegetables and fruits from India. Journal of Applied Microbiology, 2018, 125, 270-281.	1.4	22
34	Nanomedicine for delivery of therapeutic molecules. , 2017, , 1-12.		21
35	Enhancement effects of process optimization technique while elucidating the degradation pathways of drugs present in pharmaceutical industry wastewater using Micrococcus yunnanensis. Chemosphere, 2020, 238, 124689.	4.2	21
36	Polyphosphate recovery by a native <i>Bacillus cereus</i> strain as a direct effect of glyphosate uptake. ISME Journal, 2019, 13, 1497-1505.	4.4	20

3

#	Article	IF	Citations
37	Synthesis, characterization and in vitro biological studies of novel cyano derivatives of N-alkyl and N-aryl piperazine. European Journal of Medicinal Chemistry, 2007, 42, 471-476.	2.6	19
38	Antibacterial potential of silver nanoparticles biosynthesised using <i>Canarium ovatum</i> leaves extract. IET Nanobiotechnology, 2017, 11, 506-511.	1.9	19
39	Antimicrobial Silver Nanoparticles: Future of Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 89-119.	0.4	19
40	Poly-(Lactic-co-Glycolic) Acid Nanoparticles for Synergistic Delivery of Epirubicin and Paclitaxel to Human Lung Cancer Cells. Molecules, 2020, 25, 4243.	1.7	19
41	Evaluation of Anticancer activity of Silver Nanoparticles on the A549 Human Lung Carcinoma Cell Lines through Alamar Blue Assay. Bio-protocol, 2019, 9, e3131.	0.2	17
42	Controlled size chitosan nanoparticles as an efficient, biocompatible oligonucleotides delivery system. Journal of Applied Polymer Science, 2010, 118, 2071-2077.	1.3	16
43	Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy. Biomolecules, 2020, 10, 1679.	1.8	14
44	Advances in Gene Delivery Systems. BioMed Research International, 2015, 2015, 1-2.	0.9	13
45	Exploring the Antibacterial and Antibiofilm Efficacy of Silver Nanoparticles Biosynthesized Using Punica granatum Leaves. Molecules, 2021, 26, 5762.	1.7	13
46	Versatile biomedical potential of biosynthesized silver nanoparticles from Acacia nilotica bark. Journal of Applied Biomedicine, 2019, 17, 115-124.	0.6	11
47	Tools and techniques for physico-chemical characterization of nanoparticles. , 2013, , 43-63.		10
48	A Study on Impact of BPA in the Adipose Tissue Dysfunction (Adiposopathy) in Asian Indian Type 2 Diabetes Mellitus Subjects. Indian Journal of Clinical Biochemistry, 2020, 35, 451-457.	0.9	10
49	Improved transfection efficiency of chitosanâ€DNA complexes employing reverse transfection. Journal of Applied Polymer Science, 2012, 124, 1771-1777.	1.3	9
50	Evaluation of antibiofilm and catalytic activity of biogenic silver nanoparticles synthesized from <i>Acacia nilotica</i> leaf extract. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 045003.	0.7	9
51	Recent Patents in siRNA Delivery Employing Nanoparticles as Delivery Vectors. Recent Patents on DNA & Gene Sequences, 2012, 6, 91-97.	0.7	9
52	Potential implications of nanoparticle characterization on <i>in vitro</i> and <i>in vivo</i> gene delivery. Therapeutic Delivery, 2012, 3, 1347-1356.	1.2	8
53	Aryldiazoquinoline based multifunctional small molecules for modulating ${\rm Al}^2 < {\rm sub} > 42 < / {\rm sub} > 2020, 10, 28827-28837.$	1.7	8
54	Assessment of antibacterial and anticancer capability of silver nanoparticles extracellularly biosynthesized using Aspergillus terreus. Nano Express, 2020, 1, 030011.	1.2	8

#	Article	lF	Citations
55	RNA interference technology with emphasis on delivery vehicles—prospects and limitations. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1391-1399.	1.9	7
56	Synthesis and evolution of polymeric nanoparticles. , 2018, , 401-438.		7
57	Polymeric nanocarriers for site-specific gene therapy. , 2018, , 689-714.		7
58	Advancement in nanotechnology-based approaches for the treatment and diagnosis of hypercholesterolemia. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 188-197.	1.9	6
59	Polyethylenimine nanoparticles. , 2013, , 197-223.		4
60	Nanotoxicology. , 2017, , 187-201.		4
61	Recent development in therapeutic strategies targeting Pseudomonas aeruginosa biofilms – A review. Materials Today: Proceedings, 2021, 46, 2359-2373.	0.9	4
62	Biosynthesis and in vitro Antimicrobial Potential of Silver Nanoparticles Prepared using Dicoma tomentosa Plant Extract. Nanoscience and Nanotechnology - Asia, 2018, 8, 240-247.	0.3	4
63	Theory and limitations to gene therapy. , 2013, , 89-111.		2
64	Genetics of Lipodystrophy: Can It Help in Understanding the Pathophysiology of Metabolic Syndrome?. Biomolecules, 2018, 8, 47.	1.8	2
65	Recent Progress in Applied Nanomaterials. Nanotechnology in the Life Sciences, 2019, , 33-64.	0.4	2
66	Chitosan nanoparticles., 2013,, 163-196.		1
67	Regulatory aspects of nanoparticulate mediated nucleic acid delivery systems., 2017,, 203-217.		1
68	Characterization of nanoparticles: in vitro and in vivo., 2013,, 65-88.		0
69	Nanoparticles for locked nucleic acid delivery. , 2017, , 113-134.		0
70	Nanoparticles for siRNA-mediated gene silencing. , 2017, , 83-111.		0
71	Clinical studies and future prospects. , 2017, , 219-232.		0