Donald G Puro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8722857/publications.pdf

Version: 2024-02-01

20 papers

717 citations

687363 13 h-index 18 g-index

20 all docs

20 docs citations

20 times ranked

858 citing authors

#	Article	IF	CITATIONS
1	Physiology and Pathobiology of the Pericyteâ€Containing Retinal Microvasculature: New Developments. Microcirculation, 2007, 14, 1-10.	1.8	114
2	Enhancement of P2X ₇ -Induced Pore Formation and Apoptosis: An Early Effect of Diabetes on the Retinal Microvasculature., 2004, 45, 1026.		87
3	Activation of NMDA receptor-channels in human retinal Mýller glial cells inhibits inward-rectifying potassium currents. Visual Neuroscience, 1996, 13, 319-326.	1.0	82
4	Regulation of P2X7-induced pore formation and cell death in pericyte-containing retinal microvessels. American Journal of Physiology - Cell Physiology, 2005, 288, C568-C576.	4.6	69
5	Diabetes-induced dysfunction of retinal MÃ $^{1}\!/\!4$ ller cells. Transactions of the American Ophthalmological Society, 2002, 100, 339-52.	1.4	59
6	Dopamine activates ATP-sensitive K ⁺ currents in rat retinal pericytes. Visual Neuroscience, 2001, 18, 935-940.	1.0	50
7	Retinovascular physiology and pathophysiology: New experimental approach/new insights. Progress in Retinal and Eye Research, 2012, 31, 258-270.	15.5	42
8	SHORT COMMUNICATION: Expression of transforming growth factor-ßs and their receptors by human retinal glial cells. Current Eye Research, 1998, 17, 546-550.	1.5	33
9	Bioelectric impact of pathological angiogenesis on vascular function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9934-9939.	7.1	29
10	Serum-induced changes in the physiology of mammalian retinal glial cells: role of lysophosphatidic acid. Journal of Physiology, 1998, 506, 445-458.	2.9	25
11	Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms. American Journal of Physiology - Cell Physiology, 2012, 302, C1413-C1420.	4.6	24
12	NAD+-Induced Vasotoxicity in the Pericyte-Containing Microvasculature of the Rat Retina: Effect of Diabetes., 2006, 47, 5032.		23
13	Plasma-induced changes in the physiology of mammalian retinal glial cells: Role of glutamate. Glia, 1999, 25, 205-215.	4.9	15
14	Platelet-derived growth factor-BB: A survival factor for the retinal microvasculature during periods of metabolic compromise. Current Eye Research, 2001, 23, 93-97.	1.5	15
15	Purinergic Vasotoxicity: Role of the Pore/Oxidant/KATP Channel/Ca2+ Pathway in P2X7-Induced Cell Death in Retinal Capillaries. Vision (Switzerland), 2018, 2, 25.	1.2	15
16	Role of ion channels in the functional response of conjunctival goblet cells to dry eye. American Journal of Physiology - Cell Physiology, 2018, 315, C236-C246.	4.6	12
17	Electrotonic transmission in the retinal vasculature: inhibitory role of the diabetes/ VEGF / aPKC pathway. Physiological Reports, 2019, 7, e14095.	1.7	8
18	Impact of P2X7 Purinoceptors on Goblet Cell Function: Implications for Dry Eye. International Journal of Molecular Sciences, 2021, 22, 6935.	4.1	7

#	Article	IF	CITATIONS
19	How goblet cells respond to dry eye: adaptive and pathological roles of voltage-gated calcium channels and P2X ₇ purinoceptors. American Journal of Physiology - Cell Physiology, 2020, 318, C1305-C1315.	4.6	5
20	Bioelectric Responses of Conjunctival Goblet Cells to Dry Eye: Impact of Ion Channels on Exocytotic Function and Viability. International Journal of Molecular Sciences, 2020, 21, 9415.	4.1	3