
Yong-Xiang Leng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hemocompatibility of titanium oxide films. Biomaterials, 2003, 24, 2177-2187.	5.7	363
2	Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition. Wear, 2007, 263, 1423-1429.	1.5	170
3	Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Materials Science and Engineering C, 2009, 29, 1589-1592.	3.8	155
4	Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films. Biomaterials, 2002, 23, 2545-2552.	5.7	150
5	Activation of platelets adhered on amorphous hydrogenated carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition (PIII-D). Biomaterials, 2003, 24, 2821-2829.	5.7	148
6	Immobilization of selenocystamine on TiO2 surfaces for in situ catalytic generation of nitric oxide and potential application in intravascular stents. Biomaterials, 2011, 32, 1253-1263.	5.7	131
7	Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. Surface and Coatings Technology, 2002, 156, 289-294.	2.2	121
8	Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering. Thin Solid Films, 2001, 398-399, 471-475.	0.8	114
9	The effects of amorphous carbon films deposited on polyethylene terephthalate on bacterial adhesion. Biomaterials, 2004, 25, 3163-3170.	5.7	111
10	Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surface and Coatings Technology, 2005, 196, 307-311.	2.2	107
11	Surface modification of biomaterials by plasma immersion ion implantation. Surface and Coatings Technology, 2004, 186, 218-226.	2.2	106
12	Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates. Surface and Coatings Technology, 2015, 273, 12-19.	2.2	101
13	Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition. Surface and Coatings Technology, 2004, 186, 299-304.	2.2	96
14	Cu films prepared by bipolar pulsed high power impulse magnetron sputtering. Vacuum, 2018, 150, 216-221.	1.6	79
15	The biocompatibility of the tantalum and tantalum oxide films synthesized by pulse metal vacuum arc source deposition. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 30-32.	0.6	76
16	Fabrication of Ti–O/Ti–N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation. Surface and Coatings Technology, 2001, 138, 296-300.	2.2	75
17	Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma. Applied Surface Science, 2010, 256, 3941-3945.	3.1	73
18	Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 22-25.	0.6	67

#	Article	IF	CITATIONS
19	Mechanical properties and platelet adhesion behavior of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surface Science, 2003, 531, 177-184.	0.8	65
20	The microstructure and mechanical properties of multilayer diamond-like carbon films with different modulation ratios. Applied Surface Science, 2013, 264, 207-212.	3.1	65
21	Tribocorrosion behavior of DLC-coated CoCrMo alloy in simulated biological environment. Vacuum, 2013, 92, 39-43.	1.6	62
22	The mechanical properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma. Surface and Coatings Technology, 2011, 205, 2697-2701.	2.2	60
23	Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Materials Science and Engineering C, 2016, 69, 751-759.	3.8	57
24	Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method. Applied Surface Science, 2015, 328, 319-324.	3.1	54
25	Titanium film deposition by high-power impulse magnetron sputtering: Influence of pulse duration. Vacuum, 2012, 86, 2114-2119.	1.6	51
26	Structure and properties of passivating titanium oxide films fabricated by DC plasma oxidation. Surface and Coatings Technology, 2003, 166, 176-182.	2.2	49
27	Surface modification of polymeric materials by plasma immersion ion implantation. Nuclear Instruments & Methods in Physics Research B, 2005, 237, 417-421.	0.6	49
28	Properties of titanium oxide biomaterials synthesized by titanium plasma immersion ion implantation and reactive ion oxidation. Thin Solid Films, 2000, 377-378, 573-577.	0.8	48
29	In vivo study of Ti–O thin film fabricated by PIII. Surface and Coatings Technology, 2002, 156, 284-288.	2.2	48
30	Anticoagulant surface modification of titanium via layerâ€byâ€layer assembly of collagen and sulfated chitosan multilayers. Journal of Biomedical Materials Research - Part A, 2009, 89A, 575-584.	2.1	44
31	Structure and properties of biomedical TiO2 films synthesized by dual plasma deposition. Surface and Coatings Technology, 2002, 156, 295-300.	2.2	42
32	Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition. Thin Solid Films, 2002, 420-421, 408-413.	0.8	41
33	Structure, mechanical and corrosion properties of TiN films deposited on stainless steel substrates with different inclination angles by DCMS and HPPMS. Surface and Coatings Technology, 2016, 292, 54-62.	2.2	41
34	Behavior of cultured human umbilical vein endothelial cells on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2004, 186, 270-276.	2.2	39
35	Spectroscopic ellipsometry investigation of amorphous carbon films with different sp3 content: relation with protein adsorption. Thin Solid Films, 2004, 455-456, 530-534.	0.8	37
36	Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering. Surface and Coatings Technology, 2007, 201, 8062-8065.	2.2	36

#	Article	IF	CITATIONS
37	Dry sliding wear behavior of Mg-SiC nanocomposites with high volume fractions of reinforcement. Materials Letters, 2018, 228, 112-115.	1.3	35
38	Influence of Ag doping on the microstructure, mechanical properties, and adhesion stability of diamond-like carbon films. Surface and Coatings Technology, 2021, 405, 126542.	2.2	34
39	Structure and properties of annealed amorphous hydrogenated carbon (a-C:H) films for biomedical applications. Surface and Coatings Technology, 2004, 177-178, 747-751.	2.2	32
40	Effect of annealing on structure and biomedical properties of amorphous hydrogenated carbon films. Surface and Coatings Technology, 2004, 186, 125-130.	2.2	32
41	TiN and Ti–O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti–6Al–4V. Surface and Coatings Technology, 2004, 186, 136-140.	2.2	31
42	Synthesis of nitrogen incorporated carbon films by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2004, 186, 118-124.	2.2	31
43	Antibacterial activity of silver surface modified polyethylene terephthalate by filtered cathodic vacuum arc method. Surface and Coatings Technology, 2007, 201, 6893-6896.	2.2	31
44	Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS). Surface and Coatings Technology, 2017, 315, 258-267.	2.2	30
45	Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification. Journal of Applied Polymer Science, 2012, 124, 2641-2648.	1.3	28
46	Structure and composition study of carbon-doped titanium oxide film combined with first principles. Journal of Advanced Ceramics, 2014, 3, 49-55.	8.9	28
47	Microstructure and tribological properties of Ti(Cr)SiCN coating deposited by plasma enhanced magnetron sputtering. Vacuum, 2013, 89, 168-173.	1.6	27
48	Surface modification of coronary artery stent by Ti–O/Ti–N complex film coating prepared with plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 18-21.	0.6	26
49	Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 411-415.	0.6	26
50	Properties of titanium oxide synthesized by pulsed metal vacuum arc deposition. Surface and Coatings Technology, 2004, 176, 141-147.	2.2	25
51	Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition. Journal of Biomedical Materials Research - Part A, 2008, 87A, 1027-1033.	2.1	25
52	Deposition of a-C:H films on UHMWPE substrate and its wear-resistance. Applied Surface Science, 2009, 256, 284-288.	3.1	25
53	The effect of hydrogen on the tribological behavior of diamond like carbon (DLC) coatings sliding against Al 2 O 3 in water environment. Surface and Coatings Technology, 2017, 320, 619-623.	2.2	24
54	The microstructure and properties of commercial pure iron modified by plasma nitriding. Solid State Jonics, 2008, 179, 971-974.	1.3	23

4

#	Article	IF	CITATIONS
55	Haemocompatibility of hydrogenated amorphous carbon (a-C:H) films synthesized by plasma immersion ion implantation-deposition. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 721-725.	0.6	22
56	Plasma characteristics and properties of Cu films prepared by high power pulsed magnetron sputtering. Vacuum, 2017, 135, 93-100.	1.6	22
57	The formation of the "rod-like wear debris―and tribological properties of Ag-doped diamond-like carbon films fabricated by a high-power pulsed plasma vapor deposition technique. Vacuum, 2020, 173, 109125.	1.6	22
58	Tailoring of titanium thin film properties in high power pulsed magnetron sputtering. Vacuum, 2018, 150, 144-154.	1.6	21
59	Optimal target sputtering mode for aluminum nitride thin film deposition by high power pulsed magnetron sputtering. Vacuum, 2019, 160, 410-417.	1.6	21
60	Reactive magnetron co-sputtering of Ti-xCuO coatings: Multifunctional interfaces for blood-contacting devices. Materials Science and Engineering C, 2020, 116, 111198.	3.8	21
61	Hybrid elevated-temperature, low/high-voltage plasma immersion ion implantation of AISI304 stainless steel. Surface and Coatings Technology, 2001, 135, 178-183.	2.2	20
62	Multifunctional Ti-xCu coatings for cardiovascular interfaces: Control of microstructure and surface chemistry. Materials Science and Engineering C, 2019, 104, 109969.	3.8	20
63	Fabrication and surface characterization of pulsed reactive closed-field unbalanced magnetron sputtered amorphous silicon nitride films. Surface and Coatings Technology, 2006, 200, 4144-4151.	2.2	19
64	Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 416-419.	0.6	19
65	Improved hardness and corrosion resistance of iron by Ti/TiN multilayer coating and plasma nitriding duplex treatment. Surface and Coatings Technology, 2010, 204, 3082-3086.	2.2	19
66	Corrosion susceptibility investigation of Ti–O film modified cobalt-chromium alloy (L-605) vascular stents by cyclic potentiodynamic polarization measurement. Surface and Coatings Technology, 2011, 206, 893-896.	2.2	19
67	Evaluation of mechanical properties of Ti(Cr)SiC(O)N coated cemented carbide tools. Vacuum, 2013, 90, 50-58.	1.6	19
68	A brief review of bio-tribology in cardiovascular devices. Biosurface and Biotribology, 2015, 1, 249-262.	0.6	19
69	Tribological behavior of diamond like carbon film sliding against CoCrMo or Al2O3 in air and water environment. Tribology International, 2016, 95, 456-461.	3.0	19
70	Numerical and Experimental Study of Residual Stress of Multilayer Diamond-Like Carbon Films Prepared by Filtered Cathodic Vacuum Arc Deposition. IEEE Transactions on Plasma Science, 2012, 40, 2261-2266.	0.6	18
71	Mechanical properties and thermomechanical stability of diamond-like carbon films synthesized by pulsed vacuum arc plasma deposition. Surface and Coatings Technology, 2003, 173, 67-73.	2.2	17
72	Comparative properties of titanium oxide biomaterials grown by pulsed vacuum arc plasma deposition and by unbalanced magnetron sputtering. Surface and Coatings Technology, 2006, 201, 157-163.	2.2	17

#	Article	IF	CITATIONS
73	The microstructure and mechanical properties of TiN and TiO2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve. Surface and Coatings Technology, 2006, 201, 1012-1016.	2.2	17
74	Behavior of endothelial cells on micro-patterned titanium oxide fabricated by plasma immersion ion implantation and deposition and plasma etching. Surface and Coatings Technology, 2007, 201, 6874-6877.	2.2	17
75	Effect of hydrogen flow on the properties of hydrogenated amorphous carbon films fabricated by electron cyclotron resonance plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2011, 206, 1007-1010.	2.2	17
76	Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering. Surface and Coatings Technology, 2021, 420, 127325.	2.2	17
77	Deformation behavior of titanium nitride film prepared by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2002, 156, 170-175.	2.2	16
78	Composition, structure and properties of SiNx films fabricated by pulsed reactive closed-field unbalanced magnetron sputtering. Nuclear Instruments & Methods in Physics Research B, 2005, 240, 741-751.	0.6	16
79	In vitro platelet adhesion and activation of polyethylene terephthalate modified by acetylene plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 12-14.	0.6	16
80	Surface engineering of Ti–O films by photochemical immobilization of gelatin. Materials Science and Engineering C, 2008, 28, 1495-1500.	3.8	16
81	Tribological performance of ultra-high-molecular-weight polyethylene sliding against DLC-coated and nitrogen ion implanted CoCrMo alloy measured in a hip joint simulator. Surface and Coatings Technology, 2012, 206, 4907-4914.	2.2	16
82	Structural characterization and mechanical properties of functionalized pulsed-plasma polymerized allylamine film. Surface and Coatings Technology, 2010, 204, 3047-3052.	2.2	15
83	The adhesion and corrosion resistance of Ti–O films on CoCrMo alloy fabricated by high power pulsed magnetron sputtering (HPPMS). Surface and Coatings Technology, 2014, 252, 8-14.	2.2	15
84	Effect of wafer size on the film internal stress measurement by wafer curvature method. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 93-99.	0.4	15
85	Characterization of adsorption and lubrication of synovial fluid proteins and HA on DLC joint bearings surface. Surface and Coatings Technology, 2017, 320, 320-332.	2.2	15
86	Formation of rod-shaped wear debris and the graphitization tendency of Cu-doped hydrogenated diamond-like carbon films. Diamond and Related Materials, 2020, 102, 107654.	1.8	15
87	Effect of Ar plasma etching of Ti–O film surfaces on biological behavior of endothelial cell. Surface and Coatings Technology, 2007, 201, 6901-6905.	2.2	14
88	Structure and stress of Cu films prepared by high power pulsed magnetron sputtering. Vacuum, 2019, 160, 226-232.	1.6	14
89	Wettability and bloodcompatibility of a-C:N:H films deposited by PIII-D. Surface and Coatings Technology, 2010, 204, 3039-3042.	2.2	13
90	Film characterization of titanium oxide films prepared by high-power impulse magnetron sputtering. Surface and Coatings Technology, 2011, 206, 967-971.	2.2	13

#	Article	IF	CITATIONS
91	Enhanced endothelialization guided by fibronectin functionalized plasma polymerized acrylic acid film. Materials Science and Engineering C, 2012, 32, 1025-1031.	3.8	13
92	The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution. Applied Surface Science, 2014, 308, 100-105.	3.1	13
93	Effective Strategy for Enhancing the Performance of Li ₄ Ti ₅ O ₁₂ Anodes in Lithium-Ion Batteries: Magnetron Sputtering Molybdenum Disulfide-Optimized Interface Architecture. ACS Applied Materials & amp; Interfaces, 2019, 11, 26880-26890.	4.0	13
94	Si/a-C Nanocomposites with a Multiple Buffer Structure via One-Step Magnetron Sputtering for Ultrahigh-Stability Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 45726-45736.	4.0	13
95	In vitro analysis of cell compatibility of TiCuN films with different Cu contents. Surface and Coatings Technology, 2021, 408, 126790.	2.2	13
96	The role of metal ions in the behavior of bovine serum albumin molecules under physiological environment. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120604.	2.0	13
97	Inhibition of adherent platelet activation produced by Ti–O thin film fabricated by PIII. Surface and Coatings Technology, 2004, 186, 265-269.	2.2	12
98	Behavior of human umbilical vein endothelial cells on micro-patterned amorphous hydrogenated carbon films produced by plasma immersion ion implantation & deposition and plasma etching. Diamond and Related Materials, 2007, 16, 550-557.	1.8	12
99	Modulate the deposition rate through changing the combination of frequency and pulse width at constant duty cycle. Surface and Coatings Technology, 2015, 281, 27-34.	2.2	12
100	Catalytic Formation of Nitric Oxide Mediated by Ti–Cu Coatings Provides Multifunctional Interfaces for Cardiovascular Applications. Advanced Materials Interfaces, 2018, 5, 1701487.	1.9	12
101	Ti-O/TiN films synthesized by plasma immersion ion implantation and deposition on 316L: Study of deformation behavior and mechanical properties. Thin Solid Films, 2005, 484, 219-224.	0.8	10
102	Bloodcompatibility improvement of titanium oxide film modified by phosphorus ion implantation. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 15-17.	0.6	10
103	The biomedical properties of polyethylene terephthalate surface modified by silver ion implantation. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 141-145.	0.6	10
104	The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 451-454.	0.6	10
105	Theoretical calculation and experimental study of influence of oxygen vacancy on the electronic structure and hemocompatibility of rutile TiO2. Science in China Series D: Earth Sciences, 2009, 52, 2742-2748.	0.9	10
106	Dose-dependent cytotoxicity evaluation of graphite nanoparticles for diamond-like carbon film application on artificial joints. Biomedical Materials (Bristol), 2017, 12, 015018.	1.7	10
107	Effect of tantalum content of titanium oxide film fabricated by magnetron sputtering on the behavior of cultured human umbilical vein endothelial cells (HUVEC). Nuclear Instruments & Methods in Physics Research B, 2006, 242, 26-29.	0.6	9
108	Effects of screen-grid bias voltage on the microstructure and properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma. Vacuum, 2012, 86, 1945-1951.	1.6	9

#	Article	IF	CITATIONS
109	Corrosion Resistance of Ti-O Film Modified 316L Stainless Steel Coronary Stents In Vitro. Journal of Materials Engineering and Performance, 2012, 21, 424-428.	1.2	9
110	In vitro cytocompatibility evaluation of hydrogenated and unhydrogenated carbon films. Surface and Coatings Technology, 2014, 258, 913-920.	2.2	9
111	Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas. Acta Metallurgica Sinica (English Letters), 2014, 27, 239-244.	1.5	9
112	Formation of a carbonaceous film on the surface of Cu in a bovine serum albumin solution. Surface and Coatings Technology, 2019, 358, 611-616.	2.2	9
113	Mechanism of protein biofilm formation on Ag-DLC films prepared for application in joint implants. Surface and Coatings Technology, 2021, 422, 127553.	2.2	9
114	Corrosion resistance and antithrombogenic behavior of La and Nd ion implanted stainless steels. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2006, 24, 1790-1794.	0.9	8
115	Photochemical immobilization of bovine serum albumin on Ti–O and evaluations in vitro and in vivo. Applied Surface Science, 2008, 255, 489-493.	3.1	8
116	The adhesion and clinical application of titanium oxide film on a 316†L vascular stent. Surface and Coatings Technology, 2019, 363, 430-435.	2.2	8
117	Studies of the composition, tribology and wetting behavior of silicon nitride films formed by pulsed reactive closed-field unbalanced magnetron sputtering. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 33-36.	0.6	7
118	Effect of hydrogen on the behavior of cultured human umbilical vein endothelial cells (HUVEC) on titanium oxide films fabricated by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2007, 201, 8140-8145.	2.2	7
119	The Effect of a TiN Interlayer on the Tribological Properties of Diamond-like Carbon Films Deposited on 7A04 Aluminum Alloy. IEEE Transactions on Plasma Science, 2011, 39, 3144-3148.	0.6	7
120	Structure and Properties of Ti-O-N Films Synthesized by Reactive Magnetic Sputtering. Physics Procedia, 2011, 18, 40-45.	1.2	7
121	Titanium interlayer between Ti–O film on CoCrMo implant alloy for improving adhesion: Detailed XPS and TEM analysis of the interface. Surface and Coatings Technology, 2015, 277, 197-202.	2.2	7
122	Evaluation of the Size-Dependent Cytotoxicity of DLC (Diamondlike Carbon) Wear Debris in Arthroplasty Applications. ACS Biomaterials Science and Engineering, 2017, 3, 530-539.	2.6	7
123	Regulating the uniformity of DLC films in ECR plasma with negative substrate biasing. Surface and Coatings Technology, 2019, 365, 15-23.	2.2	7
124	Microstructure and properties of Ti2AlN thin film synthesized by vacuum annealing of high power pulsed magnetron sputtering deposited Ti/AlN multilayers. Surface and Coatings Technology, 2021, 425, 127749.	2.2	7
125	Deposition of titanium films on complex bowl-shaped workpieces using DCMS and HiPIMS. Surface and Coatings Technology, 2022, 442, 128192.	2.2	7
126	Controlling synthesis of Ti–O/Ti–N gradient films by PIII. Surface and Coatings Technology, 2002, 156, 208-213.	2.2	6

#	Article	IF	CITATIONS
127	Functional inorganic films fabricated by PIII(-D) for surface modification of blood contacting biomaterials: Fabrication parameters, characteristics and antithrombotic properties. Surface and Coatings Technology, 2007, 201, 6828-6832.	2.2	6
128	Inhibition of bacterial adherence on the surface of biliary stent materials modified with chitosan. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 795-798.	0.4	6
129	Surface engineered titanium alloys for biomedical devices. , 2010, , 568-602.		6
130	Microstructure and Platelet Adhesion Behavior of Titanium Oxide Films Synthesized by Reactive High-Power Pulse Magnetron Sputtering. IEEE Transactions on Plasma Science, 2013, 41, 1837-1843.	0.6	6
131	Research of composition and photocatalytic property of carbon-doped Ti-O films prepared by R-MS using CO2 gas resource. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 381-384.	0.6	6
132	Fatigue durability and corrosion resistance of TiO2 films on CoCrMo alloy under cyclic deformation. Surface and Coatings Technology, 2015, 275, 252-259.	2.2	6
133	In vitro cytotoxicity evaluation of nano-carbon particles with different sp 2 /sp 3 ratios. Materials Science and Engineering C, 2017, 75, 854-862.	3.8	6
134	Effects of process parameters on the structure of hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2010, 204, 3029-3033.	2.2	5
135	The structure and adhesion of hydrogenated amorphous carbon (a-C:H) films synthesized on CoCrMo alloy by plasma immersion ion implantation and deposition at different flow ratios of acetylene to argon. Surface and Coatings Technology, 2011, 206, 994-998.	2.2	5
136	Effect of a hydrogenated interface on the wear behavior of a diamond-like carbon film in a water environment. Diamond and Related Materials, 2017, 74, 53-58.	1.8	5
137	The uniformity of TiN films deposited on the inner surfaces of a hemispherical workpiece by high-power pulsed magnetron sputtering. International Journal of Modern Physics B, 2019, 33, 1950329.	1.0	5
138	Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance. Coatings, 2020, 10, 1064.	1.2	5
139	Effect of Ion Energy on the Microstructure and Properties of Titanium Nitride Thin Films Deposited by High Power Pulsed Magnetron Sputtering. Coatings, 2021, 11, 579.	1.2	5
140	Deformation behavior of TiO2 films deposited on NiTi shape memory alloy after tensile and water-bath heating tests. Surface and Coatings Technology, 2021, 416, 127151.	2.2	5
141	Biocompatibility of Ti-Mn-N films with different manganese contents. Surface and Coatings Technology, 2020, 403, 126354.	2.2	5
142	Antithrombogenic investigation and biological behavior of cultured human umbilical vein endothelial cells on Ti-O film. Science in China Series D: Earth Sciences, 2006, 49, 20-28.	0.9	4
143	Study on wettabilities and platelet adhesion behavior of C:H and C:N:H films prepared by DC-MFCVA. Applied Surface Science, 2008, 255, 469-472.	3.1	4
144	Mechanical Properties of DLC/Ti-O Bilayer Films. IEEE Transactions on Plasma Science, 2009, 37, 1136-1139.	0.6	4

#	Article	IF	CITATIONS
145	Preparation and Tribological Properties of Modified Field's Alloy Nanoparticles as Additives in Liquid Poly-alfa-olefin Solution. Journal of Tribology, 2019, 141, .	1.0	4
146	Effect of nitrogen flow on the properties of carbon nitride films deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Vacuum, 2021, 189, 110223.	1.6	4
147	Shellac: A Bioactive Coating for Surface Engineering of Cardiovascular Devices. Advanced Materials Interfaces, 2022, 9, .	1.9	4
148	Electrochemical behaviors of TiO2â^'x films synthesized by plasma-based ion implantation and deposition in fibrinogen containing PBS solution. Surface and Coatings Technology, 2007, 201, 6889-6892.	2.2	3
149	Wear Mechanisms During Sliding of Ti64 Balls Against Bare and HFCVD Polycrystalline-Diamond-Coated WC-Co Exchangeable Inserts. IEEE Transactions on Plasma Science, 2012, 40, 1829-1836.	0.6	3
150	Wear and Failure Process of TiN and DLC Films Monitored With Open Circuit Potential. IEEE Transactions on Plasma Science, 2013, 41, 1844-1849.	0.6	3
151	Effects of Adsorption of Albumin and Gamma-Globulin on the Tribological Performance of a Diamond-Like Carbon Film. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1103-1108.	0.4	3
152	Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering. International Journal of Modern Physics B, 2019, 33, 1940017.	1.0	3
153	Biomedical Applications of Plasma and Ion Beam Processing. Journal of the Vacuum Society of Japan, 2008, 51, 81-92.	0.3	3
154	Evaluation of the Crystal Structure and Mechanical Properties of Cu Doped TiN Films. Coatings, 2022, 12, 652.	1.2	3
155	Nitrogen Plasma Source Ion Implantation (PSII) for Improvement of Blood-Compatibility of Silicon. Key Engineering Materials, 2005, 288-289, 335-338.	0.4	2
156	Studies of the composition, mechanical and electrical properties of N-doped carbon films prepared by DC-MFCAD. Nuclear Instruments & Methods in Physics Research B, 2006, 242, 324-327.	0.6	2
157	Improving thromboresistance of Ti–O films by phosphorus-doping: Fabricating conditions, characteristics and antithrombotic behavior. Surface and Coatings Technology, 2007, 201, 8066-8069.	2.2	2
158	High frequency and low voltage plasma immersion ion implantation of nitrogen on industrial pure iron at different Rf power. Surface and Coatings Technology, 2011, 206, 943-946.	2.2	2
159	Effect of bias voltage on the properties of hydrogenated amorphous carbon films fabricated on CoCrMo alloy by electron cyclotron resonance plasma enhance chemical vapor deposition (ECR-PECVD). Physics Procedia, 2011, 18, 122-127.	1.2	2
160	The study of composition and surface electron structure of nitrogen-doped DLC film prepared by PIII-D. Functional Materials Letters, 2015, 08, 1540015.	0.7	2
161	Microstructure and mechanical properties of Cr films deposited with different peak powers by high-power impulse magnetron sputtering. Rare Metals, 2023, 42, 327-335.	3.6	2
162	The microstructure and mechanical properties of Ti(CoCr)N films produced by DC magnetron sputtering. International Journal of Modern Physics B, 2019, 33, 1950388.	1.0	2

#	Article	IF	CITATIONS
163	Effect of grafted poly [2-methacryloyloxyethyl phosphorylcholine (MPC)] on tribological properties of ultra-high molecular weight polyethylene (UHMWPE). International Journal of Modern Physics B, 2019, 33, 1940056.	1.0	2
164	Investigation of Blood Compatibility of Titanium Oxide Film Doped with Tantalum by Sputtering Deposition. , 2001, , .		2
165	Tribological properties of Mn–TiN films and formation of graphite-like layers in physiological solution. Vacuum, 2022, 200, 111021.	1.6	2
166	Characteristics of gradient TiO/sub 2//TiN films produced by oxidization of TiN using plasma immersion ion implantation (PIII-D) and physical vapor deposition (PVD). , 0, , .		1
167	Surface characterization and antibacterial adhesion of poly (ethylene terephthalate) modified by acetylene plasma immersion ion implantation. , 0, , .		1
168	Microstructure and properties of titanium oxide synthesized by metal vacuum arc deposition. , 0, , .		1
169	In vivo blood compatibility of titanium oxide film coated artificial heart valves prepared by plasma immersion ion implantation and deposition. , 0, , .		1
170	Surface modification of medical polyurethane by acetylene plasma immersion ion implantation. , 0, , .		1
171	Plasma surface modification of biomaterials applied for cardiovascular devices. , 0, , .		1
172	Effect of characteristics on the behavior of cultured human umbilical vein endothelial cells (HUVEC) onto titanium oxide film surface fabricated by plasma immersion ion implantation and deposition (PIIID). , 0, , .		1
173	Blood Compatibility of Chitosan Immobilized on Poly(Ethylene Terephthalate) Surface Modified by Plasma and Ultraviolet Grafting. Key Engineering Materials, 2005, 288-289, 327-330.	0.4	1
174	Influence of peak current on substrate plasma sheath properties of Ti films deposited by high-power pulsed magnetron sputtering. International Journal of Modern Physics B, 2019, 33, 1940016.	1.0	1
175	Structure of Al-based composite coatings prepared by thermal diffusion of the arc-ion plating Al coatings. International Journal of Modern Physics B, 2019, 33, 1940021.	1.0	1
176	Wear behavior of fluorinated diamond-like carbon (DLC) film in bull serum albumin (BSA) solutions. International Journal of Modern Physics B, 2019, 33, 1940057.	1.0	1
177	Fabrication of duplex coatings on biomedical titanium alloys by plasma nitriding, metal plasma immersion ion implantation, and reactive plasma oxidation. , O, , .		Ο
178	Corrosion and wear resistance of TiN and Ti-O/TiN films deposited on Ti-6Al-4V using plasma implantation and deposition. , 0, , .		0
179	Structure and mechanical properties of passivating titanium oxide films fabricated by DC plasma oxidation. , 0, , .		0
180	A study of mechanical capability and blood compatibility of Ti-O/Ti-N gradient films prepared by MPIII-D. , 0, , .		0

#	Article	IF	CITATIONS
181	Characterization and property of Ti-Ta-O films fabricated by plasma immersion ion implantation and deposition. , 0, , .		0
182	Ti-N-O nano-films deposited by plasma immersion ion implantation and deposition: deformation behavior and mechanical properties. , 0, , .		0
183	Competitive protein adsorption and platelet adhesion on poly(ethylene terephthalate) surface modified by plasma grafting. , 0, , .		0
184	Structure and properties of nitrogen-doped hydrogenated amorphous carbon films fabricated by plasma immersion ion implantation (PIII). , 0, , .		0
185	Mechanical properties and structural characteristics of hydrogen incorporated carbon films synthesized by PIII-D. , 0, , .		0
186	Ti(Ta)O/sub 2/ film fabricated by magnetron sputtering and plasma immersion ion implantation and deposition: comparative study. , 0, , .		0
187	Enhanced corrosion resistance of Ti6Al4V with Ti-O film deposited by DC metal vacuum arc deposition. , 0, , .		0
188	Ti-O film deposited by DC metal vacuum arc deposition: characteristics and platelet adhesion behavior. , 0, , .		0
189	Comparative properties of titanium oxide biomaterials grown by pulsed vacuum arc plasma deposition and by unbalanced magnetron sputtering(UBM). , 0, , .		0
190	Comparative study of anti-thrombotic behavior between nitrogen-doped and nitrogen-free hydrogenated amorphous carbon films fabricated by PIII-D. , 0, , .		0
191	Ti-O/Ti-N biomedical gradient films synthesized by metal vacuum arc plasma deposition and thermal oxidation. , 0, , .		0
192	Investigation of characteristics and mechanical properties of nitrogen incorporated carbon films prepared by PIII-D. , 0, , .		0
193	The different properties of titanium oxide biomaterials grown by pulse vacuum arc plasma deposition and unbalanced magnetron sputtering (UBM). , 0, , .		0
194	Surface Modification of Blood Contacting Biomedical Implants by Plasma Processes. AIP Conference Proceedings, 2003, , .	0.3	0
195	The effect of amorphous carbon films deposited on polyethylene terephthalate on blood compatibility. , 0, , .		0
196	The microstructure and properties of titanium oxide deposited at different substrate temperature and bias voltage by pulse vacuum are plasma deposition. , 0, , .		0
197	TiN synthesized by filtered arc deposition combined with electron cyclotron resonance. , 0, , .		0
198	Biological effect of nitrogen doped diamond-like carbon films for biomedical applications. , 0, , .		0

#	Article	IF	CITATIONS
199	Studying of the effects of bias voltage on structure, mechanical properties and adhesion behavior of blood platelet of diamond-like carbon films. , 0, , .		0
200	Immobilization of biological macromolecule on titanium oxide film to improve the biocompatibility. , 0, , .		0
201	Enhanced mechanical properties of biomedical poly(ethylene terephthalate) surface modified by acetylene plasma immersion ion implantation-deposition. , 0, , .		0
202	In vivo anticoagulation of titanium oxide film coated coronary artery stent prepared by plasma immersion ion implantation and deposition. , 0, , .		0
203	Anti-thrombotic effect of amorphous hydrogenated carbon (a-C:H) films: influence of electron structure. , 0, , .		Ο
204	Effects of Surface Micropatterning on Endothelialization of Amorphous Hydrogenated Carbon (a-C:H) Films Produced by Plasma Immersion Ion Implantation and Deposition. , 2005, , .		0
205	Tribological Properties of Hydrogenated Amorphous Carbon (a-C:H) Films on Aluminium Alloy Substrate under Different Substrate Bias Voltages. Materials Science Forum, 2011, 687, 784-790.	0.3	Ο
206	BLOOD COMPATIBILITY AND MECHANICAL PROPERTY OF TALTANLUM NITRIDE FILMS SYNTHESIZED BY THE REACTIVE MAGNETRON SPUTTERING. , 2001, , .		0
207	EFFECT OF SUBSTRATE TEMPERATURE ON PROPERTIES OF THE DIAMOND-LIKE CARBON DEPOSITED BY PULSED VACUUM ARC PLASMA DEPOSITION. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2004, 40, 20.	0.7	Ο
208	Deposition and first-principles caculation of carbon-doped titanium monoxide films. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 198103.	0.2	0