Joana Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8722787/publications.pdf

Version: 2024-02-01

		586496	620720
27	1,043	16	26
papers	citations	h-index	g-index
29	29	29	1006
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gardnerella Vaginalis Dominates Multi-Species Biofilms in both Pre-Conditioned and Competitive In Vitro Biofilm Formation Models. Microbial Ecology, 2022, 84, 1278-1287.	1.4	14
2	Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ϕcymene and linalool against Gardnerella species. Scientific Reports, 2022, 12, 4417.	1.6	21
3	<i>In vitro</i> interactions within a biofilm containing three species found in bacterial vaginosis (BV) support the higher antimicrobial tolerance associated with BV recurrence. Journal of Antimicrobial Chemotherapy, 2022, 77, 2183-2190.	1.3	12
4	Exploiting the Anti-Biofilm Effect of the Engineered Phage Endolysin PM-477 to Disrupt In Vitro Single- and Dual-Species Biofilms of Vaginal Pathogens Associated with Bacterial Vaginosis. Antibiotics, 2022, 11, 558.	1.5	4
5	Six Bacterial Vaginosis-Associated Species Can Form an In Vitro and Ex Vivo Polymicrobial Biofilm That Is Susceptible to Thymbra capitata Essential Oil. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	10
6	Atopobium vaginae and Prevotella bivia Are Able to Incorporate and Influence Gene Expression in a Pre-Formed Gardnerella vaginalis Biofilm. Pathogens, 2021, 10, 247.	1.2	29
7	A New PNA-FISH Probe Targeting Fannyhessea vaginae. Frontiers in Cellular and Infection Microbiology, 2021, 11, 779376.	1.8	6
8	Crystal Violet Staining Alone Is Not Adequate to Assess Synergism or Antagonism in Multi-Species Biofilms of Bacteria Associated With Bacterial Vaginosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 795797.	1.8	15
9	<i>Gardnerella</i> and vaginal health: the truth is out there. FEMS Microbiology Reviews, 2020, 44, 73-105.	3.9	49
10	Genetic Heterogeneity and Taxonomic Diversity among Gardnerella Species. Trends in Microbiology, 2020, 28, 202-211.	3.5	41
11	Gardnerella vaginalis Enhances Atopobium vaginae Viability in an in vitro Model. Frontiers in Cellular and Infection Microbiology, 2020, 10, 83.	1.8	38
12	Evaluation of different culture media to support in vitro growth and biofilm formation of bacterial vaginosis-associated anaerobes. Peerl, 2020, 8, e9917.	0.9	13
13	The Utilization of Essential Oils to Treat Biofilm-Associated Vaginal Infections. , 2020, , 395-420.		O
14	Unveiling the role of <i>Gardnerella vaginalis</i> in polymicrobial Bacterial Vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME Journal, 2019, 13, 1306-1317.	4.4	105
15	Lactobacillus crispatus represses vaginolysin expression by BV associated Gardnerella vaginalis and reduces cell cytotoxicity. Anaerobe, 2018, 50, 60-63.	1.0	27
16	Innate immune components affect growth and virulence traits of bacterial-vaginosis-associated and non-bacterial-vaginosis-associated <i>Gardnerella vaginalis</i> bisease, 2018, 76, .	0.8	12
17	Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. Npj Biofilms and Microbiomes, 2017, 3, 3.	2.9	66
18	Prevalence of bacterial vaginosis in Portuguese pregnant women and vaginal colonization by <i>Gardnerella vaginalis </i> . Peerl, 2017, 5, e3750.	0.9	12

#	Article	lF	CITATIONS
19	<i>Escherichia coli</i> and <i>Enterococcus faecalis</i> are able to incorporate and enhance a pre-formed <i>Gardnerella vaginalis</i> biofilm. Pathogens and Disease, 2016, 74, ftw007.	0.8	22
20	Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence <i>in situ </i> i) hybridization method. PeerJ, 2015, 3, e780.	0.9	23
21	Using an in-vitro biofilm model to assess the virulence potential of Bacterial Vaginosis or non-Bacterial Vaginosis Gardnerella vaginalis isolates. Scientific Reports, 2015, 5, 11640.	1.6	107
22	BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms. Anaerobe, 2015, 36, 56-59.	1.0	24
23	Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions. Frontiers in Microbiology, 2015, 6, 1528.	1.5	125
24	Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Gardnerella vaginalis. BMC Genomics, 2014, 15, 1070.	1.2	101
25	Gardnerella vaginalis Outcompetes 29 Other Bacterial Species Isolated From Patients With Bacterial Vaginosis, Using in an In Vitro Biofilm Formation Model. Journal of Infectious Diseases, 2014, 210, 593-596.	1.9	95
26	Influence of anaerobic conditions on vaginal microbiota recovery from bacterial vaginosis patients. Sexually Transmitted Infections, 2013, 89, 307-307.	0.8	10
27	Reciprocal Interference between <i>Lactobacillus</i> spp. and <i>Gardnerella vaginalis </i> on Initial Adherence to Epithelial Cells. International Journal of Medical Sciences, 2013, 10, 1193-1198.	1.1	61