Young-min Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8722653/publications.pdf

Version: 2024-02-01

160 5,641 papers citations

38 h-index 95266 68 g-index

164 all docs

164 docs citations 164 times ranked 8747 citing authors

#	Article	IF	CITATIONS
1	Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Applied Physics Reviews, 2022, 9, .	11.3	40
2	Site-selective doping mechanisms for the enhanced photocatalytic activity of tin oxide nanoparticles. Applied Catalysis B: Environmental, 2022, 305, 121083.	20.2	9
3	Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Science Advances, 2022, 8, eabm4005.	10.3	20
4	Modulating the Ferroelectricity of Hafnium Zirconium Oxide Ultrathin Films via Interface Engineering to Control the Oxygen Vacancy Distribution. Advanced Materials Interfaces, 2022, 9, .	3.7	10
5	Escalating Ferromagnetic Order via Seâ€Vacancies Near Vanadium in WSe ₂ Monolayers. Advanced Materials, 2022, 34, e2106551.	21.0	20
6	Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nature Nanotechnology, 2022, 17, 285-291.	31.5	34
7	Chemically Stable Low-Dimensional Electrides in Transition Metal-Rich Monochalcogenides: Theoretical and Experimental Explorations. Journal of the American Chemical Society, 2022, 144, 4496-4506.	13.7	8
8	Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature, 2022, 603, 434-438.	27.8	59
9	Hydrogen evolution reaction catalyst with high catalytic activity by interplay between organic molecules and transition metal dichalcogenide monolayers. Materials Today Energy, 2022, 25, 100976.	4.7	4
10	Hybrid Deep Learning Crystallographic Mapping of Polymorphic Phases in Polycrystalline Hf _{0.5} Zr _{0.5} O ₂ Thin Films. Small, 2022, 18, e2107620.	10.0	4
11	Mapping the electrocatalytic water splitting activity of VO ₂ across its insulator-to-metal phase transition. Nanoscale, 2022, 14, 8281-8290.	5.6	1
12	A single-atom vanadium-doped 2D semiconductor platform for attomolar-level molecular sensing. Journal of Materials Chemistry A, 2022, 10, 13298-13304.	10.3	12
13	Highly enhanced ferroelectricity in HfO ₂ -based ferroelectric thin film by light ion bombardment. Science, 2022, 376, 731-738.	12.6	58
14	Large-Area MoS ₂ Nanosheets with Triangular Nanopore Arrays as Active and Robust Electrocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 9696-9703.	3.1	16
15	Sequential Growth of Vertical Transition-Metal Dichalcogenide Heterostructures on Rollable Aluminum Foil. ACS Nano, 2022, 16, 8851-8859.	14.6	8
16	Selective patterning of out-of-plane piezoelectricity in MoTe2 via focused ion beam. Nano Energy, 2021, 79, 105451.	16.0	17
17	Lifshitz Transition and Nonâ€Fermi Liquid Behavior in Highly Doped Semimetals. Advanced Materials, 2021, 33, 2005742.	21.0	5
18	Impact of Local Separation on the Structural and Electrochemical Behaviors in Li ₂ MoO ₃ LiCrO ₂ Disordered Rockâ€Salt Cathode Material. Advanced Energy Materials, 2021, 11, 2002958.	19.5	16

#	Article	IF	CITATIONS
19	Atomic-scale identification of invisible cation vacancies at an oxide homointerface. Materials Today Physics, 2021, 16, 100302.	6.0	7
20	Utilization of electron-beam irradiation under atomic-scale chemical mapping for evaluating the cycling performance of lithium transition metal oxide cathodes. Journal of Materials Chemistry A, 2021, 9, 2429-2437.	10.3	10
21	Crystallographic Orientation Analysis of Nanocrystalline Tungsten Thin Film Using TEM Precession Electron Diffraction and SEM Transmission Kikuchi Diffraction. Microscopy and Microanalysis, 2021, 27, 237-249.	0.4	7
22	Universal Transfer of 2D Materials Grown on Au Substrate Using Sulfur Intercalation. Applied Science and Convergence Technology, 2021, 30, 45-49.	0.9	1
23	Evidence of itinerant holes for long-range magnetic order in the tungsten diselenide semiconductor with vanadium dopants. Physical Review B, 2021, 103, .	3.2	16
24	Epitaxial Singleâ€Crystal Growth of Transition Metal Dichalcogenide Monolayers via the Atomic Sawtooth Au Surface. Advanced Materials, 2021, 33, e2006601.	21.0	55
25	Color of Copper/Copper Oxide. Advanced Materials, 2021, 33, e2007345.	21.0	28
26	Atomic-scale chemical mapping of copper dopants in Bi2Te2.7Se0.3 thermoelectric alloy. Materials Today Physics, 2021, 17, 100347.	6.0	13
27	Cooperative evolution of polar distortion and nonpolar rotation of oxygen octahedra in oxide heterostructures. Science Advances, 2021, 7, .	10.3	20
28	Strain-driven autonomous control of cation distribution for artificial ferroelectrics. Science Advances, $2021, 7, .$	10.3	5
29	Multiple Magnetic Phases in Van Der Waals Mnâ€Doped SnS ₂ Semiconductor. Advanced Functional Materials, 2021, 31, 2102560.	14.9	17
30	Toward non-gas-permeable hBN film growth on smooth Fe surface. 2D Materials, 2021, 8, 034003.	4.4	5
31	Substitutional Vanadium Sulfide Nanodispersed in MoS ₂ Film for Ptâ€6calable Catalyst. Advanced Science, 2021, 8, e2003709.	11.2	19
32	Deep Learningâ€Assisted Quantification of Atomic Dopants and Defects in 2D Materials. Advanced Science, 2021, 8, e2101099.	11.2	29
33	Unusually High Ion Conductivity in Large-Scale Patternable Two-Dimensional MoS ₂ Film. ACS Nano, 2021, 15, 12267-12275.	14.6	11
34	High-Performance Bismuth Antimony Telluride Thermoelectric Membrane on Curved and Flexible Supports. ACS Energy Letters, 2021, 6, 2378-2385.	17.4	19
35	Doping-Mediated Lattice Engineering of Monolayer ReS ₂ for Modulating In-Plane Anisotropy of Optical and Transport Properties. ACS Nano, 2021, 15, 13770-13780.	14.6	17
36	Regulating Te Vacancies through Dopant Balancing via Excess Ag Enables Rebounding Power Factor and High Thermoelectric Performance in pâ€Type PbTe. Advanced Science, 2021, 8, e2100895.	11.2	18

3

#	Article	IF	Citations
37	Hidden role of intrinsic Sb-rich nano-precipitates for high-performance Bi2-Sb Te3 thermoelectric alloys. Acta Materialia, 2021, 215, 117058.	7.9	13
38	Nano-patterning on multilayer MoS2 via block copolymer lithography for highly sensitive and responsive phototransistors. Communications Materials, 2021, 2, .	6.9	19
39	Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Materials Today Energy, 2021, 21, 100795.	4.7	27
40	Anomalous Electronic and Protonic Conductivity of 2D Titanium Oxide and Lowâ€√emperature Power Generation Using Its Protonic Conduction. Advanced Materials Interfaces, 2021, 8, 2101156.	3.7	2
41	(111)-oriented Sn-doped BaTiO3 epitaxial thin films for ultrahigh energy density capacitors. Ceramics International, 2021, 47, 26856-26862.	4.8	9
42	Contribution of the Subâ€Surface to Electrocatalytic Activity in Atomically Precise La _{0.7} Sr _{0.3} MnO ₃ Heterostructures. Small, 2021, 17, e2103632.	10.0	4
43	Optimal Synthesis and Application of a Si–Ti–Al Ternary Alloy as an Anode Material for Lithium-Ion Batteries. Materials, 2021, 14, 6912.	2.9	2
44	Spin-Selective Hole–Exciton Coupling in a V-Doped WSe ₂ Ferromagnetic Semiconductor at Room Temperature. ACS Nano, 2021, 15, 20267-20277.	14.6	13
45	Tuning of aluminum concentration distribution in high nickel cathode particles for lithium ion batteries. Journal of Alloys and Compounds, 2020, 816, 152677.	5.5	5
46	Ultralow switching voltage slope based on two-dimensional materials for integrated memory and neuromorphic applications. Nano Energy, 2020, 69, 104472.	16.0	50
47	Improved polaronic transport under a strong Mott–Hubbard interaction in Cu-substituted NiO. Inorganic Chemistry Frontiers, 2020, 7, 853-858.	6.0	6
48	Controlling surface oxygen vacancies in Fe-doped TiO2 anatase nanoparticles for superior photocatalytic activities. Applied Surface Science, 2020, 507, 144916.	6.1	35
49	Multiscale probing of the influence of the defect-induced variation of oxygen vacancies on the photocatalytic activity of doped ZnO nanoparticles. Journal of Materials Chemistry A, 2020, 8, 25345-25354.	10.3	24
50	Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nature Nanotechnology, 2020, 15, 861-867.	31.5	79
51	Probing One-Dimensional Oxygen Vacancy Channels Driven by Cation–Anion Double Ordering in Perovskites. Nano Letters, 2020, 20, 8353-8359.	9.1	12
52	Role of anionic vacancy for active hydrogen evolution in WTe2. Applied Surface Science, 2020, 515, 145972.	6.1	34
53	Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction. Science Advances, 2020, 6, eaba7416.	10.3	30
54	Tailoring Domain Morphology in Monolayer NbSe ₂ and W _{<i>x</i>} Heterostructure. ACS Nano, 2020, 14, 8784-8792.	14.6	30

#	Article	IF	Citations
55	Ferromagnetic Order at Room Temperature in Monolayer WSe ₂ Semiconductor via Vanadium Dopant. Advanced Science, 2020, 7, 1903076.	11.2	148
56	Monodispersed SnS nanoparticles anchored on carbon nanotubes for high-retention sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7861-7869.	10.3	60
57	Propagation Control of Octahedral Tilt in SrRuO ₃ via Artificial Heterostructuring. Advanced Science, 2020, 7, 2001643.	11.2	33
58	Phase Instability amid Dimensional Crossover in Artificial Oxide Crystal. Physical Review Letters, 2020, 124, 026401.	7.8	32
59	Development of Fast-Rechargeable Lithium Ion Batteries By Graphite Etched with Potassium Hydroxide. ECS Meeting Abstracts, 2020, MA2020-02, 584-584.	0.0	0
60	In situ Observation of Oxygen Vacancy Order-Disorder Transition in NdBaCo2O5.5 Layered Perovskite Oxide. Microscopy and Microanalysis, 2019, 25, 1872-1873.	0.4	0
61	Self-selective van der Waals heterostructures for large scale memory array. Nature Communications, 2019, 10, 3161.	12.8	139
62	Tunable Negative Differential Resistance in van der Waals Heterostructures at Room Temperature by Tailoring the Interface. ACS Nano, 2019, 13, 8193-8201.	14.6	69
63	Critical role of atomic-scale defect disorders for high-performance nanostructured half-Heusler thermoelectric alloys and their thermal stability. Acta Materialia, 2019, 180, 97-104.	7.9	15
64	Atomic and Electronic Reconstruction at the a-LAO/STO Interface by E-Beam Induced Crystallization. Microscopy and Microanalysis, 2019, 25, 1894-1895.	0.4	0
65	In Situ Observation of the Effect of Accelerating Voltage on Electron Beam Damage of Layered Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44293-44299.	8.0	15
66	Confined polaronic transport in (LaFeO3) <i>n</i> /(SrFeO3)1 superlattices. APL Materials, 2019, 7, .	5.1	5
67	Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds. Nature Communications, 2019, 10, 3385.	12.8	42
68	Phase-Selective Disordered Anatase/Ordered Rutile Interface System for Visible-Light-Driven, Metal-Free CO ₂ Reduction. ACS Applied Materials & Interfaces, 2019, 11, 35693-35701.	8.0	32
69	Flexoelectric healing of intrinsically more conductive nanochannels in NdNiO3 thin films. Applied Surface Science, 2019, 497, 143727.	6.1	8
70	In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel reaction in hydrogen evolution. Nano Energy, 2019, 63, 103846.	16.0	41
71	Effect of manganese dopants on defects, nano-strain, and photovoltaic performance of Mn–CdS/CdSe nanocomposite-sensitized ZnO nanowire solar cells. Composites Science and Technology, 2019, 179, 79-87.	7.8	13
72	Direct observation of an electrically degenerate interface layer in a GaN/sapphire heterostructure. Nanoscale, 2019, 11, 8281-8292.	5.6	12

#	Article	IF	Citations
73	Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1579-1586.	8.0	17
74	Hierarchically Structured Core–Shell Design of a Lithium Transition-Metal Oxide Cathode Material for Excellent Electrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4017-4027.	8.0	13
75	Atomic-scale symmetry breaking for out-of-plane piezoelectricity in two-dimensional transition metal dichalcogenides. Nano Energy, 2019, 58, 57-62.	16.0	33
76	Direct imaging of the electron liquid at oxide interfaces. Nature Nanotechnology, 2018, 13, 198-203.	31.5	40
77	Material structure, properties, and dynamics through scanning transmission electron microscopy. Journal of Analytical Science and Technology, 2018, 9, 11.	2.1	30
78	Correlation between Geometrically Induced Oxygen Octahedral Tilts and Multiferroic Behaviors in BiFeO ₃ Films. Advanced Functional Materials, 2018, 28, 1800839.	14.9	21
79	Simple and efficient synthesis of nanograin structured single phase filled skutterudite for high thermoelectric performance. Acta Materialia, 2018, 142, 8-17.	7.9	44
80	Strain-induced indium clustering in non-polar a-plane InGaN quantum wells. Acta Materialia, 2018, 145, 109-122.	7.9	7
81	Synthesis of a one-dimensional atomic crystal of vanadium selenide (V ₂ Se ₉). RSC Advances, 2018, 8, 33980-33984.	3.6	31
82	Highly concentrated single-chain atomic crystal LiMo ₃ Se ₃ solution using ion-exchange chromatography. Chemical Communications, 2018, 54, 12503-12506.	4.1	14
83	Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362, 817-821.	12.6	336
84	Ferroelectric Polarization Rotation in Order–Disorder-Type LiNbO3 Thin Films. ACS Applied Materials & Line & Li	8.0	13
85	Isolation of Nb2Se9 Molecular Chain from Bulk One-Dimensional Crystal by Liquid Exfoliation. Nanomaterials, 2018, 8, 794.	4.1	26
86	Inorganic Molecular Chain Nb ₂ Se ₉ : Synthesis of Bulk Crystal and Oneâ€Atomâ€Thick Level Exfoliation. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800451.	2.4	40
87	Probing structural changes during ductile fracture in metallic glasses via in situ straining inside a MeV transmission electron microscope. Intermetallics, 2018, 102, 94-100.	3.9	2
88	Direct growth of doping controlled monolayer WSe ₂ by selenium-phosphorus substitution. Nanoscale, 2018, 10, 11397-11402.	5.6	34
89	Implications of cation-disordered grain boundaries on the electrochemical performance of the LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 16111-16120.	10.3	20
90	Highly fluidic liquid at homointerface generates grain-boundary dislocation arrays for high-performance bulk thermoelectrics. Acta Materialia, 2018, 159, 266-275.	7.9	19

#	Article	IF	Citations
91	Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms. Nano Letters, 2018, 18, 4523-4530.	9.1	83
92	Stabilization of a Ga-adlayer structure with the zincblende stacking sequence in the GaN(0 0 0 \hat{a}^{1}) surface at the nanoscale. Nanoscale, 2017, 9, 2596-2602.	5.6	3
93	Active hydrogen evolution through lattice distortion in metallic MoTe ₂ . 2D Materials, 2017, 4, 025061.	4.4	103
94	Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell thicknesses for electrocatalysis. Nano Research, 2017, 10, 2866-2880.	10.4	24
95	Quantitative comparison of bright field and annular bright field imaging modes for characterization of oxygen octahedral tilts. Ultramicroscopy, 2017, 181, 1-7.	1.9	43
96	Reduced Graphene Oxide-Wrapped Nickel-Rich Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18720-18729.	8.0	106
97	<i>In Situ</i> Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO ₃ System. ACS Nano, 2017, 11, 6942-6949.	14.6	89
98	Enhanced electrocatalytic activity via phase transitions in strongly correlated SrRuO ₃ thin films. Energy and Environmental Science, 2017, 10, 924-930.	30.8	82
99	Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire. Nano Letters, 2017, 17, 6140-6145.	9.1	19
100	Direct Observation of Inherent Atomicâ€Scale Defect Disorders responsible for Highâ€Performance Ti _{1â^'} <i>_x</i> Hf <i>_x</i> NiSn _{1â^'} <i>_y</i> Halfâ€Heusler Thermoelectric Alloys. Advanced Materials, 2017, 29, 1702091.	<subxy<td>ub49:/i></td></s	ub49:/i>
101	In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale, 2017, 9, 582-593.	5.6	76
102	Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film. Scientific Reports, 2016, 6, 38724.	3.3	8
103	Enhanced thermoelectric performance of PEDOT:PSS/PANI–CSA polymer multilayer structures. Energy and Environmental Science, 2016, 9, 2806-2811.	30.8	121
104	Unexpected orbital magnetism in Bi-rich Bi2Se3 nanoplatelets. NPG Asia Materials, 2016, 8, e271-e271.	7.9	9
105	Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Enterfaces, 2016, 8, 27730-27739.	8.0	27
106	Towards spin-polarized two-dimensional electron gas at a surface of an antiferromagnetic insulating oxide. Physical Review B, 2016, 94, .	3.2	6
107	Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor. Scientific Reports, 2016, 6, 23299.	3.3	45
108	Influence of defects and nanoscale strain on the photovoltaic properties of CdS/CdSe nanocomposite co-sensitized ZnO nanowire solar cells. Electrochimica Acta, 2016, 220, 500-510.	5.2	17

#	Article	IF	CITATIONS
109	Migration mechanism of a GaN bicrystalline grain boundary as a model system. Scientific Reports, 2016, 6, 26493.	3.3	5
110	Nanotwin-governed toughening mechanism in hierarchically structured biological materials. Nature Communications, 2016, 7, 10772.	12.8	127
111	Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire—l. Microstructural characterization. AIP Advances, 2015, 5, 077180.	1.3	2
112	Change in equilibrium position of misfit dislocations at the GaN/sapphire interface by Si-ion implantation into sapphire. II. Electron energy loss spectroscopic study. AIP Advances, 2015, 5, .	1.3	1
113	Frenkelâ€Defectâ€Mediated Chemical Ordering Transition in a Li–Mn–Ni Spinel Oxide. Angewandte Chemie - International Edition, 2015, 54, 7963-7967.	13.8	36
114	Phase Transformations and Surface/Interface Properties in Functional Perovskites with Aberration-Corrected STEM/EELS. Microscopy and Microanalysis, 2015, 21, 2429-2430.	0.4	0
115	Multiferroic tunnel junctions and ferroelectric control of magnetic state at interface (invited). Journal of Applied Physics, 2015, 117, .	2.5	26
116	Capturing Heterogeneous Nucleation of Nanoscale Pits and Subsequent Crystal Shrinkage during Ostwald Ripening of a Metal Phosphate. ACS Nano, 2015, 9, 327-335.	14.6	14
117	Quadruple-junction lattice coherency and phase separation in a binary-phase system. Nature Communications, 2015, 6, 8252.	12.8	11
118	Room Temperature Ferrimagnetism and Ferroelectricity in Strained, Thin Films of BiFe _{0.5} Mn _{0.5} O ₃ . Advanced Functional Materials, 2014, 24, 7478-7487.	14.9	38
119	Interrelation between Structure – Magnetic Properties in La _{0.5} Sr _{0.5} CoO ₃ . Advanced Materials Interfaces, 2014, 1, 1400203.	3.7	20
120	Elastic softening of sapphire by Si diffusion for dislocation-free GaN. Acta Materialia, 2014, 66, 97-104.	7.9	12
121	Direct observation of ferroelectric field effect andÂvacancy-controlled screening at the BiFeO3/LaxSr1â^'xMnO3 interface. Nature Materials, 2014, 13, 1019-1025.	27.5	218
122	Oxygen-Vacancy-Induced Polar Behavior in (LaFeO3)2/(SrFeO3) Superlattices. Nano Letters, 2014, 14, 2694-2701.	9.1	53
123	Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nature Materials, 2013, 12, 397-402.	27.5	283
124	Interplay of Octahedral Tilts and Polar Order in BiFeO ₃ Films. Advanced Materials, 2013, 25, 2497-2504.	21.0	101
125	Real-Time Observation of Crystal Evaporation in a Metal Phosphate at High Temperature. Journal of the American Chemical Society, 2013, 135, 7811-7814.	13.7	14
126	Stand-off dislocations at a twist grain boundary in gold as seen via high-resolution transmission electron microscopy. Physical Review B, 2013, 87, .	3.2	7

#	ARTICLE	IF	CITATIONS
127	Cation Disordering by Rapid Crystal Growth in Olivine-Phosphate Nanocrystals. Nano Letters, 2012, 12, 3068-3073.	9.1	24
128	Characterization of crystallographic properties of GaN thin film using automated crystal orientation mapping with TEM. Metals and Materials International, 2012, 18, 997-1001.	3.4	1
129	Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nature Materials, 2012, 11, 888-894.	27.5	282
130	Exploring Mesoscopic Physics of Vacancy-Ordered Systems through Atomic Scale Observations of Topological Defects. Physical Review Letters, 2012, 109, 065702.	7.8	36
131	Sculpting fabrication of nanocrater catalysts and exclusive control of wall numbers and diameters in carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 15175.	6.7	2
132	Signature of surface energy dependence of partial dislocation slip in a gold nanometer-sized protrusion. Scripta Materialia, 2011, 64, 1125-1128.	5.2	5
133	Threeâ€Dimensional Morphology of Iron Phosphide Phases in a Polycrystalline LiFePO ₄ Matrix. Advanced Materials, 2011, 23, 1398-1403.	21.0	20
134			

#	Article	IF	CITATIONS
145	Electron-beam-induced transition aluminas from aluminum trihydroxide. Scripta Materialia, 2008, 59, 1022-1025.	5.2	10
146	Formation of crystalline silicon in kaolinite by electron beam irradiation and in situ heating in the HVEM. Journal of Electron Microscopy, 2007, 56, 153-155.	0.9	4
147	Quantitative Evaluations of a High-Voltage Multiscan CCD Camera. Journal of Electron Microscopy, 2007, 56, 217-224.	0.9	2
148	Ultrathin Carbon Support Films for High-Resolution Electron Microscopy of Nanoparticles. Microscopy and Microanalysis, 2007, 13, 285-290.	0.4	0
149	Pd-Doped Double-Walled Silica Nanotubes as Hydrogen Storage Material at Room Temperature. Journal of Physical Chemistry C, 2007, 111, 2679-2682.	3.1	28
150	Electric and Dielectric Properties of Nb-Doped CaCu3Ti4O12Ceramics. Journal of the American Ceramic Society, 2007, 90, 2118-2121.	3.8	67
151	Effect of Al Doping on the Electric and Dielectric Properties of CaCu ₃ Ti ₄ O ₁₂ . Journal of the American Ceramic Society, 2007, 90, 4009-4011.	3.8	38
152	Synthesis, structure and magnetic properties of \hat{l}^2 -MnO 2 nanorods. Nanoscale Research Letters, 2007, 2, 81-86.	5.7	30
153	Formation of nickel nanoparticles on amorphous silicon thin film and its effect on crystallization. Journal of Vacuum Science & Technology B, 2006, 24, 1405.	1.3	0
154	On the origin of nanocrystals in the shear band in a quasicrystal forming bulk metallic glass Ti40Zr29Cu9Ni8Be14. Scripta Materialia, 2006, 55, 509-512.	5.2	25
155	Magnetic superlattices and their nanoscale phase transition effects. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3023-3027.	7.1	89
156	Influence of Minor Ions on the Stability and Hydration Rates of βâ€Dicalcium Silicate. Journal of the American Ceramic Society, 2004, 87, 900-905.	3.8	92
157	Study of alinite cement hydration by impedance spectroscopy. Cement and Concrete Research, 2003, 33, 299-304.	11.0	12
158	Isomorphic substitution and the hydration behavior of alinite cement. Journal of the European Ceramic Society, 2003, 23, 2067-2073.	5.7	6
159	Synthesis and Hydration Characteristics of Alinite Cement. Journal of the American Ceramic Society, 2002, 85, 1941-1946.	3.8	7
160	Anisotropic Abnormal Grain Growth in TiO ₂ /SiO ₂ â€Doped Alumina. Journal of the American Ceramic Society, 2000, 83, 2809-2812.	3.8	77