Franck Remoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8722504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2006, 100, 363-370.	0.7	125
2	Novel Peptide Marker Corresponding to Salivary Protein gSG6 Potentially Identifies Exposure to Anopheles Bites. PLoS ONE, 2008, 3, e2472.	1.1	116
3	Safety and Immunogenicity of rSh28GST Antigen in Humans: Phase 1 Randomized Clinical Study of a Vaccine Candidate against Urinary Schistosomiasis. PLoS Neglected Tropical Diseases, 2012, 6, e1704.	1.3	105
4	Antibody response against saliva antigens of Anopheles gambiae and Aedes aegypti in travellers in tropical Africa. Microbes and Infection, 2007, 9, 1454-1462.	1.0	100
5	Human lgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malaria Journal, 2009, 8, 198.	0.8	81
6	Human Antibody Responses to the Anopheles Salivary gSG6-P1 Peptide: A Novel Tool for Evaluating the Efficacy of ITNs in Malaria Vector Control. PLoS ONE, 2010, 5, e15596.	1.1	79
7	Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis. Nature Biotechnology, 1998, 16, 454-457.	9.4	69
8	Humoral Response to the Anopheles gambiae Salivary Protein gSG6: A Serological Indicator of Exposure to Afrotropical Malaria Vectors. PLoS ONE, 2011, 6, e17980.	1.1	68
9	Human Antibody Response to Anopheles gambiae Saliva: An Immuno-Epidemiological Biomarker to Evaluate the Efficacy of Insecticide-Treated Nets in Malaria Vector Control. American Journal of Tropical Medicine and Hygiene, 2010, 83, 115-121.	0.6	67
10	Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response. Malaria Journal, 2009, 8, 116.	0.8	64
11	Schistosomiasis Coinfection in Children Influences Acquired Immune Response against Plasmodium falciparum Malaria Antigens. PLoS ONE, 2010, 5, e12764.	1.1	59
12	Human Antibody Response to Aedes aegypti Saliva in an Urban Population in Bolivia: A New Biomarker of Exposure to Dengue Vector Bites. American Journal of Tropical Medicine and Hygiene, 2012, 87, 504-510.	0.6	58
13	Bloodâ€feeding and immunogenic <i>Aedes aegypti</i> saliva proteins. Proteomics, 2010, 10, 1906-1916.	1.3	57
14	lgE and IgG4 antibody responses to Aedes saliva in African children. Acta Tropica, 2007, 104, 108-115.	0.9	53
15	First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to Anopheles funestus bites. Tropical Medicine and International Health, 2010, 15, 1198-1203.	1.0	51
16	Functional Specific Binding of Testosterone to Schistosoma haematobium 28-Kilodalton Glutathione S-Transferase. Infection and Immunity, 2002, 70, 601-605.	1.0	50
17	A multiplex assay for the simultaneous detection of antibodies against 15 Plasmodium falciparum and Anopheles gambiae saliva antigens. Malaria Journal, 2010, 9, 317.	0.8	49
18	Relationship between Exposure to Vector Bites and Antibody Responses to Mosquito Salivary Gland Extracts. PLoS ONE, 2011, 6, e29107.	1.1	48

#	Article	IF	CITATIONS
19	lgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Sénégal. Malaria Journal, 2012, 11, 72.	0.8	45
20	An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malaria Journal, 2007, 6, 75.	0.8	44
21	Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. Journal of Infectious Diseases, 2017, 215, jiw543.	1.9	44
22	Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin. Acta Tropica, 2008, 105, 145-153.	0.9	42
23	Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites. PLoS Neglected Tropical Diseases, 2012, 6, e1487.	1.3	42
24	First Attempt To Validate Human IgG Antibody Response to Nterm-34kDa Salivary Peptide as Biomarker for Evaluating Exposure to Aedes aegypti Bites. PLoS Neglected Tropical Diseases, 2012, 6, e1905.	1.3	41
25	Variation in exposure to Anopheles gambiae salivary gland peptide (gSG6-P1) across different malaria transmission settings in the western Kenya highlands. Malaria Journal, 2012, 11, 318.	0.8	40
26	gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas. Parasites and Vectors, 2013, 6, 68.	1.0	40
27	An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasites and Vectors, 2015, 8, 533.	1.0	40
28	Evaluation of the Effectiveness of Malaria Vector Control Measures in Urban Settings of Dakar by a Specific Anopheles Salivary Biomarker. PLoS ONE, 2013, 8, e66354.	1.1	39
29	Human IgG Antibody Response to Glossina Saliva: An Epidemiologic Marker of Exposure to Glossina Bites. American Journal of Tropical Medicine and Hygiene, 2008, 78, 750-753.	0.6	39
30	Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites. Malaria Journal, 2012, 11, 439.	0.8	35
31	High intraepithelial expression of estrogen and progesterone receptors in the transformation zone of the uterine cervix. American Journal of Obstetrics and Gynecology, 2003, 189, 1660-1665.	0.7	34
32	Human Antibody Response to Anopheles Saliva for Comparing the Efficacy of Three Malaria Vector Control Methods in Balombo, Angola. PLoS ONE, 2012, 7, e44189.	1.1	33
33	Human IgG Antibody Response to Aedes Nterm-34kDa Salivary Peptide, an Epidemiological Tool to Assess Vector Control in Chikungunya and Dengue Transmission Area. PLoS Neglected Tropical Diseases, 2016, 10, e0005109.	1.3	32
34	Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malaria Journal, 2013, 12, 224.	0.8	31
35	Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in Northern Senegal. Malaria Journal, 2013, 12, 301.	0.8	31
36	Human IgG antibody response to Glossina saliva: an epidemiologic marker of exposure to Glossina bites. American Journal of Tropical Medicine and Hygiene, 2008, 78, 750-3.	0.6	28

#	Article	IF	CITATIONS
37	Low and seasonal malaria transmission in the middle Senegal River basin: identification and characteristics of Anopheles vectors. Parasites and Vectors, 2012, 5, 21.	1.0	26
38	Human IgG antibody response to <i>Aedes aegypti</i> Ntermâ€34ÂkDa salivary peptide as an indicator to identify areas at high risk for dengue transmission: a retrospective study in urban settings of Vientiane city, Lao <scp>PDR</scp> . Tropical Medicine and International Health, 2014, 19, 576-580.	1.0	26
39	Epidemiological Applications of Assessing Mosquito Exposure in a Malaria-Endemic Area. , 2017, , 209-229.		26
40	Identification of Glossina palpalis gambiensis specific salivary antigens: towards the development of a serologic biomarker of human exposure to tsetse flies in West Africa. Microbes and Infection, 2013, 15, 416-427.	1.0	24
41	Evaluation of antibody response to Plasmodium falciparum in children according to exposure of Anopheles gambiae s.l or Anopheles funestus vectors. Malaria Journal, 2007, 6, 117.	0.8	23
42	HUMAN/VECTOR RELATIONSHIPS DURING HUMAN AFRICAN TRYPANOSOMIASIS: INITIAL SCREENING OF IMMUNOGENIC SALIVARY PROTEINS OF GLOSSINA SPECIES. American Journal of Tropical Medicine and Hygiene, 2007, 76, 327-333.	0.6	23
43	Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus. PLoS ONE, 2011, 6, e17496.	1.1	21
44	Specific antibodies to Anopheles gSG6-P1 salivary peptide to assess early childhood exposure to malaria vector bites. Malaria Journal, 2015, 14, 285.	0.8	20
45	Human Antibody Response to <i>Aedes albopictus</i> Salivary Proteins: A Potential Biomarker to Evaluate the Efficacy of Vector Control in an Area of Chikungunya and Dengue Virus Transmission. BioMed Research International, 2014, 2014, 1-8.	0.9	18
46	Therapeutic efficacy of artemether–lumefantrine for the treatment of uncomplicated falciparum malaria in northwest Benin. Malaria Journal, 2016, 15, 37.	0.8	18
47	In Silico Identification of a Candidate Synthetic Peptide (Tsgf118–43) to Monitor Human Exposure to Tsetse Flies in West Africa. PLoS Neglected Tropical Diseases, 2013, 7, e2455.	1.3	17
48	Effects of Malnutrition on Children's Immunity to Bacterial Antigens in Northern Senegal. American Journal of Tropical Medicine and Hygiene, 2014, 90, 566-573.	0.6	17
49	Operational Assessment of Long-Lasting Insecticidal Nets by Using an Anopheles Salivary Biomarker of Human–Vector Contact. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1376-1382.	0.6	17
50	Effectiveness of insecticidal nets on uncomplicated clinical malaria: a case–control study for operational evaluation. Malaria Journal, 2016, 15, 102.	0.8	17
51	Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasites and Vectors, 2014, 7, 599.	1.0	16
52	New Immuno-Epidemiological Biomarker of Human Exposure to Aedes Vector Bites: From Concept to Applications. Tropical Medicine and Infectious Disease, 2018, 3, 80.	0.9	16
53	Seroprevalence of Pertussis in Senegal: A Prospective Study. PLoS ONE, 2012, 7, e48684.	1.1	15
54	Differential acquisition of human antibody responses to Plasmodium falciparum according to intensity of exposure to Anopheles bites. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 460-467.	0.7	13

#	Article	IF	CITATIONS
55	Exploring the heterogeneity of human exposure to malaria vectors in an urban setting, Bouaké, Côte d'Ivoire, using an immuno-epidemiological biomarker. Malaria Journal, 2019, 18, 68.	0.8	13
56	First insights into the cattle serological response to tsetse salivary antigens: A promising direct biomarker of exposure to tsetse bites. Veterinary Parasitology, 2013, 197, 332-340.	0.7	12
57	Evaluation of Malaria Urban Risk Using an Immuno-Epidemiological Biomarker of Human Exposure to Anopheles Bites. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1353-1359.	0.6	12
58	Differential production in vitro of antigen specific IgG1, IgG3 and IgA: a study in Schistosoma haematobium infected individuals. Parasite Immunology, 2003, 25, 39-44.	0.7	11
59	Malaria parasite clearance from patients following artemisinin-based combination therapy in Côte d'lvoire. Infection and Drug Resistance, 2018, Volume 11, 2031-2038.	1.1	11
60	Lack of artemisinin resistance inPlasmodium falciparumin northwest Benin after 10 years of use of artemisinin-based combination therapy. Parasite, 2016, 23, 28.	0.8	10
61	Evaluation of Human Exposure to <i>Aedes</i> Bites in Rubber and Palm Cultivations Using an Immunoepidemiological Biomarker. BioMed Research International, 2018, 2018, 1-9.	0.9	10
62	Human/vector relationships during human African trypanosomiasis: initial screening of immunogenic salivary proteins of Glossina species. American Journal of Tropical Medicine and Hygiene, 2007, 76, 327-33.	0.6	10
63	Spatial Assessment of Contact Between Humans and Anopheles and Aedes Mosquitoes in a Medium-Sized African Urban Setting, Using Salivary Antibody–Based Biomarkers. Journal of Infectious Diseases, 2019, 220, 1199-1208.	1.9	9
64	Salivary Gland Proteome Analysis Reveals Modulation of Anopheline Unique Proteins in Insensitive Acetylcholinesterase Resistant Anopheles gambiae Mosquitoes. PLoS ONE, 2014, 9, e103816.	1.1	9
65	Pattern of antibody responses to Plasmodium falciparum antigens in individuals differentially exposed to Anopheles bites. Malaria Journal, 2020, 19, 83.	0.8	8
66	Identification of a Tsal152–75 salivary synthetic peptide to monitor cattle exposure to tsetse flies. Parasites and Vectors, 2016, 9, 149.	1.0	7
67	Specific isotype immune response in the diagnosis of human schistosomiasis pathology?. American Journal of Tropical Medicine and Hygiene, 2004, 71, 202-5.	0.6	7
68	The Anopheles gambiae cE5 salivary protein: a sensitive biomarker to evaluate the efficacy of insecticide-treated nets in malaria vector control. Microbes and Infection, 2015, 17, 409-416.	1.0	6
69	Use of Anopheles salivary biomarker to assess seasonal variation of human exposure to Anopheles bites in children living near rubber and oil palm cultivations in Côte d'Ivoire. Parasite Epidemiology and Control, 2019, 5, e00102.	0.6	6
70	Local transient induction of inflammatory cytokines after intranasal administration of recombinantBordetella pertussis. Microbial Pathogenesis, 1997, 22, 305-313.	1.3	4
71	Biomarkers of Vector Bites: Arthropod Immunogenic Salivary Proteins in Vector-Borne Diseases Control. Biomarkers in Disease, 2015, , 1177-1205.	0.0	3
72	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	3.9	3

#	Article	IF	CITATIONS
73	Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Tropical Medicine and Infectious Disease, 2021, 6, 185.	0.9	3
74	Synergies in integrated malaria control – Authors' reply. Lancet Infectious Diseases, The, 2013, 13, 112-113.	4.6	2
75	Spatial Heterogeneity and Seasonal Distribution of <i>Aedes</i> (<i>Stegomyia</i>) <i>aegypti</i> (L) in Abidjan, Côte d'Ivoire. Vector-Borne and Zoonotic Diseases, 2021, 21, 769-776.	0.6	2
76	Seasonal prevalence of Plasmodium falciparum infection and use of insecticide-treated nets among children in three agroecosystems in Aboisso, Côte d'lvoire. Parasitology Research, 2021, 120, 3663-3671.	0.6	1
77	Biomarkers of Vector Bites: Arthropod Immunogenic Salivary Proteins in Vector-Borne Diseases Control. , 2014, , 1-23.		0
78	Operational Evaluation of the Effectiveness of Long-lasting Insecticidal Nets on Human-Vector Contact in an African Urban Malaria Context. Open Forum Infectious Diseases, 2021, 8, ofaa635.	0.4	0
79	First evaluation of antibody responses to Culex quinquefasciatus salivary antigens as a serological biomarker of human exposure to Culex bites: A pilot study in Côte d'Ivoire. PLoS Neglected Tropical Diseases. 2021. 15. e0010004.	1.3	0