Nader Engheta

List of Publications by Citations

Source: https://exaly.com/author-pdf/8722203/nader-engheta-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

391 papers **26,419** citations

80 h-index

154 g-index

488 ext. papers

31,164 ext. citations

6.5 avg, IF

7.82 L-index

#	Paper	IF	Citations
391	Transformation optics using graphene. <i>Science</i> , 2011 , 332, 1291-4	33.3	2015
390	Achieving transparency with plasmonic and metamaterial coatings. <i>Physical Review E</i> , 2005 , 72, 016623	2.4	1063
389	Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. <i>Science</i> , 2007 , 317, 169	8373032	921
388	Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. <i>Physical Review Letters</i> , 2006 , 97, 157403	7.4	888
387	Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. <i>Physical Review B</i> , 2007 , 75,	3.3	688
386	Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. <i>ACS Nano</i> , 2012 , 6, 2804-17	16.7	641
385	Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. <i>Physical Review Letters</i> , 2008 , 100, 033903	7.4	513
384	Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. <i>Physical Review B</i> , 2006 , 74,	3.3	511
383	Performing mathematical operations with metamaterials. <i>Science</i> , 2014 , 343, 160-3	33.3	504
382	Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. <i>IEEE Transactions on Antennas and Propagation</i> , 2003 , 51, 2558-2571	4.9	444
381	Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. <i>Physical Review Letters</i> , 2005 , 95, 095504	7.4	438
380	Near-zero refractive index photonics. <i>Nature Photonics</i> , 2017 , 11, 149-158	33.9	430
379	An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2002 , 1, 10-13	3.8	404
378	Multifrequency optical invisibility cloak with layered plasmonic shells. <i>Physical Review Letters</i> , 2008 , 100, 113901	7.4	341
377	Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. <i>Nature Photonics</i> , 2013 , 7, 907-912	33.9	315
376	Tuning the scattering response of optical nanoantennas with nanocircuit loads. <i>Nature Photonics</i> , 2008 , 2, 307-310	33.9	307
375	Cloaking a sensor. <i>Physical Review Letters</i> , 2009 , 102, 233901	7.4	269

(2007-1988)

374	Electromagnetic wave propagation through a dielectricthiral interface and through a chiral slab. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1988 , 5, 1450	1.8	268
373	A positive future for double-negative metamaterials. <i>IEEE Transactions on Microwave Theory and Techniques</i> , 2005 , 53, 1535-1556	4.1	260
372	Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. <i>Physical Review Letters</i> , 2009 , 103, 153901	7.4	258
371	Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. <i>Physical Review Letters</i> , 2008 , 101, 043901	7.4	256
370	Digital metamaterials. <i>Nature Materials</i> , 2014 , 13, 1115-21	27	241
369	Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. <i>ACS Nano</i> , 2012 , 6, 8758-66	16.7	240
368	Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights. <i>Optics Express</i> , 2007 , 15, 3318-32	3.3	236
367	Negative effective permeability and left-handed materials at optical frequencies. <i>Optics Express</i> , 2006 , 14, 1557-67	3.3	236
366	On fractional calculus and fractional multipoles in electromagnetism. <i>IEEE Transactions on Antennas and Propagation</i> , 1996 , 44, 554-566	4.9	233
365	Materials science. Pursuing near-zero response. <i>Science</i> , 2013 , 340, 286-7	33.3	220
364	Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using $\bar{\mu}$ near-zero metamaterials. <i>Physical Review B</i> , 2007 , 76,	3.3	220
363	A reciprocal phase shifter using novel pseudochiral or Imedium. <i>Microwave and Optical Technology Letters</i> , 1992 , 5, 184-188	1.2	202
362	Inverse-designed metastructures that solve equations. <i>Science</i> , 2019 , 363, 1333-1338	33.3	198
361	An invisible metalBemiconductor photodetector. <i>Nature Photonics</i> , 2012 , 6, 380-385	33.9	180
360	. IEEE Transactions on Microwave Theory and Techniques, 2004 , 52, 199-210	4.1	180
359	Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. <i>ACS Nano</i> , 2013 , 7, 7186-92	16.7	174
358	. IEEE Transactions on Antennas and Propagation, 1990 , 38, 90-98	4.9	170
357	Parallel-plate metamaterials for cloaking structures. <i>Physical Review E</i> , 2007 , 75, 036603	2.4	167

356	Boosting optical nonlinearities in 🏻-near-zero plasmonic channels. <i>Physical Review B</i> , 2012 , 85,	3.3	165
355	Experimental verification of n = 0 structures for visible light. <i>Physical Review Letters</i> , 2013 , 110, 013902	7.4	165
354	Plasmonic and metamaterial cloaking: physical mechanisms and potentials. <i>Journal of Optics</i> , 2008 , 10, 093002		165
353	Wireless at the nanoscale: optical interconnects using matched nanoantennas. <i>Physical Review Letters</i> , 2010 , 104, 213902	7.4	162
352	Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. <i>Physical Review B</i> , 2007 , 75,	3.3	160
351	Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines. <i>Physical Review B</i> , 2006 , 74,	3.3	160
350	. IEEE Transactions on Antennas and Propagation, 2007, 55, 13-25	4.9	160
349	Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and ouble-positive metamaterial layers. <i>Journal of Applied Physics</i> , 2005 , 97, 094310	2.5	159
348	Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2006 , 23, 571	1.7	159
347	Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain. <i>Physical Review B</i> , 2007 , 76,	3.3	157
346	Modes in chirowaveguides. <i>Optics Letters</i> , 1989 , 14, 593-5	3	146
345	Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics, 2014, 1, 530-	- 5 337	145
344	A long-range polarization-controlled optical tractor beam. <i>Nature Photonics</i> , 2014 , 8, 846-850	33.9	142
343	PT metamaterials via complex-coordinate transformation optics. <i>Physical Review Letters</i> , 2013 , 110, 173	1 9 041	139
342	Radiation patterns of interfacial dipole antennas. <i>Radio Science</i> , 1982 , 17, 1557-1566	1.4	135
341	Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. <i>Optics Letters</i> , 2015 , 40, 1500-3	3	134
340	Thin absorbing screens using metamaterial surfaces		131
339	Cloaking and transparency for collections of particles with metamaterial and plasmonic covers. <i>Optics Express</i> , 2007 , 15, 7578-90	3.3	127

338	Photonic doping of epsilon-near-zero media. <i>Science</i> , 2017 , 355, 1058-1062	33.3	126
337	Polarization-difference imaging: a biologically inspired technique for observation through scattering media. <i>Optics Letters</i> , 1995 , 20, 608-10	3	126
336	Wave-matter interactions in epsilon-and-mu-near-zero structures. <i>Nature Communications</i> , 2014 , 5, 563	817.4	122
335	Kinetics of recovery of the dark-adapted salamander rod photoresponse. <i>Journal of General Physiology</i> , 1998 , 111, 7-37	3.4	117
334	Lateral forces on circularly polarizable particles near a surface. <i>Nature Communications</i> , 2015 , 6, 8799	17.4	114
333	High impedance metamaterial surfaces using Hilbert-curve inclusions. <i>IEEE Microwave and Wireless Components Letters</i> , 2004 , 14, 130-132	2.6	114
332	Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. <i>Optica</i> , 2016 , 3, 339	9 8.6	112
331	Electromagnetic chirality and its applications. <i>IEEE Antennas and Propagation Society Newsletter</i> , 1988 , 30, 6-12		110
330	Fractional curl operator in electromagnetics. <i>Microwave and Optical Technology Letters</i> , 1998 , 17, 86-91	1.2	107
329	The quest for magnetic plasmons at optical frequencies. <i>Optics Express</i> , 2009 , 17, 5723-30	3.3	106
328	Transmission-line analysis of epsilon -near-zero-filled narrow channels. <i>Physical Review E</i> , 2008 , 78, 016	6 0 .4µ	106
327	Dielectric sensing in ?-near-zero narrow waveguide channels. <i>Physical Review B</i> , 2008 , 78,	3.3	106
326	. IEEE Transactions on Antennas and Propagation, 1992, 40, 367-374	4.9	106
325	Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. <i>ACS Nano</i> , 2014 , 8, 9482-91	16.7	105
324	Tilted pillars on wrinkled elastomers as a reversibly tunable optical window. <i>Advanced Materials</i> , 2014 , 26, 4127-33	24	105
323	Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range. <i>ACS Photonics</i> , 2015 , 2, 1584-	15931	103
322	Experimental realization of optical lumped nanocircuits at infrared wavelengths. <i>Nature Materials</i> , 2012 , 11, 208-12	27	102
321	All-passive nonreciprocal metastructure. <i>Nature Communications</i> , 2015 , 6, 8359	17.4	101

320	Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects. <i>Journal of Applied Physics</i> , 2009 , 105, 044905	2.5	99
319	Dynamical theory of artificial optical magnetism produced by rings of plasmonic nanoparticles. <i>Physical Review B</i> , 2008 , 78,	3.3	99
318	Solution-processed phase-change VO(2) metamaterials from colloidal vanadium oxide (VO(x)) nanocrystals. <i>ACS Nano</i> , 2014 , 8, 797-806	16.7	96
317	Roadmap on optical metamaterials. <i>Journal of Optics (United Kingdom)</i> , 2016 , 18, 093005	1.7	89
316	. IEEE Transactions on Antennas and Propagation, 2006 , 54, 1632-1643	4.9	88
315	. IEEE Transactions on Antennas and Propagation, 1988, 36, 1007-1013	4.9	87
314	Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Physical Review B, 2008, 78,	3.3	84
313	Metamaterial special issue introduction. <i>IEEE Transactions on Antennas and Propagation</i> , 2003 , 51, 2546	i-2 ₁ 5 ₉ 19	83
312	Traditional and emerging materials for optical metasurfaces. <i>Nanophotonics</i> , 2017 , 6, 452-471	6.3	81
311	Imaging and steering an optical wireless nanoantenna link. <i>Nature Communications</i> , 2014 , 5, 4354	17.4	80
310	Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials. <i>Physical Review B</i> , 2007 , 75,	3.3	79
309	Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. <i>Nano Letters</i> , 2013 , 13, 350-7	11.5	75
308	Theory of wave propagation in magnetized near-zero-epsilon metamaterials: evidence for one-way photonic states and magnetically switched transparency and opacity. <i>Physical Review Letters</i> , 2013 , 111, 257401	7.4	73
307	Homogenization of plasmonic metasurfaces modeled as transmission-line loads. <i>Metamaterials</i> , 2011 , 5, 90-96		73
306	Raspberry-like metamolecules exhibiting strong magnetic resonances. ACS Nano, 2015, 9, 1263-70	16.7	71
305	All optical metamaterial circuit board at the nanoscale. <i>Physical Review Letters</i> , 2009 , 103, 143902	7.4	70
304	Fabrication of a dual-tier thin film micropolarization array. <i>Optics Express</i> , 2007 , 15, 4994-5007	3.3	69
303	Chirosorblas an invisible medium. <i>Electronics Letters</i> , 1989 , 25, 173	1.1	69

302	Antenna radiation in the presence of a chiral sphere. Journal of Applied Physics, 1990, 67, 639-647	2.5	69
301	Single-Negative, Double-Negative, and Low-index Metamaterials and their Electromagnetic Applications. <i>IEEE Antennas and Propagation Magazine</i> , 2007 , 49, 23-36	1.7	68
300	Tunneling of obliquely incident waves through PT-symmetric epsilon-near-zero bilayers. <i>Physical Review B</i> , 2014 , 89,	3.3	67
299	Space-filling curve RFID tags		67
298	One-way phonon isolation in acoustic waveguides. <i>Applied Physics Letters</i> , 2014 , 104, 081905	3.4	66
297	Optical isolation with epsilon-near-zero metamaterials. <i>Optics Express</i> , 2013 , 21, 3279-86	3.3	65
296	Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging. <i>Physical Review Letters</i> , 2010 , 105, 263906	7.4	65
295	Internal homogenization: effective permittivity of a coated sphere. <i>Optics Express</i> , 2012 , 20, 22976-86	3.3	62
294	Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. <i>Science Advances</i> , 2016 , 2, e1600987	14.3	62
293	Boosting molecular fluorescence with a plasmonic nanolauncher. <i>Physical Review Letters</i> , 2009 , 103, 043902	7.4	61
292	Light squeezing through arbitrarily shaped plasmonic channels and sharp bends. <i>Physical Review B</i> , 2008 , 78,	3.3	59
291	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. <i>Nature Nanotechnology</i> , 2017 , 12, 228-232	28.7	56
2 90	Fourier optics on graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	56
289	. IEEE Transactions on Microwave Theory and Techniques, 1990 , 38, 1631-1634	4.1	56
288	Near-infrared metatronic nanocircuits by design. <i>Physical Review Letters</i> , 2013 , 111, 073904	7.4	55
287	Nonlinear control of tunneling through an epsilon-near-zero channel. <i>Physical Review B</i> , 2009 , 79,	3.3	54
286	. IEEE Transactions on Antennas and Propagation, 1989, 37, 1447-1452	4.9	54
285	Chiroshield: a Salisbury/Dallenbach shield alternative. <i>Electronics Letters</i> , 1990 , 26, 1332	1.1	54

284	Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation. <i>Physical Review B</i> , 2008 , 78,	3.3	53
283	Antireflection temporal coatings. <i>Optica</i> , 2020 , 7, 323	8.6	53
282	Geometry-invariant resonant cavities. <i>Nature Communications</i> , 2016 , 7, 10989	17.4	52
281	Theory, Modeling and Features of Optical Nanoantennas. <i>IEEE Transactions on Antennas and Propagation</i> , 2013 , 61, 1508-1517	4.9	52
280	Dual-tier thin film polymer polarization imaging sensor. <i>Optics Express</i> , 2010 , 18, 19292-303	3.3	52
279	Plasmon Resonances in Self-Assembled Two-Dimensional Au Nanocrystal Metamolecules. <i>ACS Nano</i> , 2017 , 11, 2917-2927	16.7	51
278	Transporting an Image through a Subwavelength Hole. <i>Physical Review Letters</i> , 2009 , 102, 103902	7.4	51
277	. IEEE Transactions on Antennas and Propagation, 2007 , 55, 1698-1708	4.9	51
276	Reducing the Complexity: Enantioselective Chiral Near-Fields by Diagonal Slit and Mirror Configuration. <i>ACS Photonics</i> , 2016 , 3, 1076-1084	6.3	50
275	Control of light by curved space in nanophotonic structures. <i>Nature Photonics</i> , 2017 , 11, 664-670	33.9	49
274	PT-symmetry-induced wave confinement and guiding in $\bar{\mu}$ -near-zero metamaterials. <i>Physical Review B</i> , 2015 , 91,	3.3	48
273	The rise of near-zero-index technologies. <i>Science</i> , 2017 , 358, 1540-1541		48
		33.3	
272	Separation and contrast enhancement of overlapping cast shadow components using polarization. Optics Express, 2006, 14, 7099-108	33.3	48
272 271	Separation and contrast enhancement of overlapping cast shadow components using polarization.		48
	Separation and contrast enhancement of overlapping cast shadow components using polarization. <i>Optics Express</i> , 2006 , 14, 7099-108	3.3	
271	Separation and contrast enhancement of overlapping cast shadow components using polarization. <i>Optics Express</i> , 2006 , 14, 7099-108 Coupled-mode theory for chirowaveguides. <i>Journal of Applied Physics</i> , 1990 , 67, 2742-2745	3.3	48
271 270	Separation and contrast enhancement of overlapping cast shadow components using polarization. <i>Optics Express</i> , 2006 , 14, 7099-108 Coupled-mode theory for chirowaveguides. <i>Journal of Applied Physics</i> , 1990 , 67, 2742-2745 Plasmonics without negative dielectrics. <i>Physical Review B</i> , 2016 , 93,	3·3 2·5 3·3	48

266	Electric levitation using ?-near-zero metamaterials. <i>Physical Review Letters</i> , 2014 , 112, 033902	7.4	44	
265	Electronically controlled optical beam-steering by an active phased array of metallic nanoantennas. <i>Optics Express</i> , 2013 , 21, 5198-208	3.3	44	
264	Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies. <i>Physical Review Applied</i> , 2017 , 8,	4.3	42	
263	Nonreciprocal rotating power flow within plasmonic nanostructures. <i>Physical Review Letters</i> , 2013 , 111, 047401	7.4	42	
262	Design of nanofilters for optical nanocircuits. <i>Physical Review B</i> , 2008 , 77,	3.3	42	
261	Enhanced Directivity From Subwavelength Infrared/Optical Nano-Antennas Loaded With Plasmonic Materials or Metamaterials. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 3027-3039	4.9	42	
260	Polaritonic Hybrid-Epsilon-near-Zero Modes: Beating the Plasmonic Confinement vs Propagation-Length Trade-Off with Doped Cadmium Oxide Bilayers. <i>Nano Letters</i> , 2019 , 19, 948-957	11.5	42	
259	Waveguide metatronics: Lumped circuitry based on structural dispersion. <i>Science Advances</i> , 2016 , 2, e1	504790	0 41	
258	Nonlocal transformation optics. <i>Physical Review Letters</i> , 2012 , 108, 063902	7.4	41	
257	Effects of shape and loading of optical nanoantennas on their sensitivity and radiation properties. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 1266	1.7	41	
256	Sub-wavelength resonators: on the use of metafilms to overcome the /2 size limit. <i>IET Microwaves, Antennas and Propagation</i> , 2008 , 2, 120-129	1.6	41	
255	Surface waves in chiral layers. <i>Optics Letters</i> , 1991 , 16, 723-5	3	41	
254	Reduction of surface waves in chirostrip antennas. <i>Electronics Letters</i> , 1991 , 27, 5-7	1.1	41	
253	Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. <i>ACS Nano</i> , 2019 , 13, 1617-1624	16.7	41	
252	. IEEE Transactions on Antennas and Propagation, 2013 , 61, 33-44	4.9	40	
251	Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. <i>Physical Review B</i> , 2009 , 79,	3.3	39	
250	Coaxial-to-Waveguide Matching With \$varepsilon\$-Near-Zero Ultranarrow Channels and Bends. <i>IEEE Transactions on Antennas and Propagation</i> , 2010 , 58, 328-339	4.9	38	
249	Electrically controlled one-way photon flow in plasmonic nanostructures. <i>Nature Communications</i> , 2014 , 5, 5250	17.4	37	

248	Cloaking a receiving antenna or a sensor with plasmonic metamaterials. <i>Metamaterials</i> , 2010 , 4, 153-15	ing a receiving antenna or a sensor with plasmonic metamaterials. <i>Metamaterials</i> , 2010 , 4, 153-159	
247	Quadrupole-enhanced Raman scattering. ACS Nano, 2014 , 8, 9025-34	16.7	36
246	Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna. <i>Applied Physics Letters</i> , 2014 , 105, 243503	3.4	36
245	Radiation from a traveling-wave current sheet at the interface between a conventional material and a metamaterial with negative permittivity and permeability. <i>Microwave and Optical Technology Letters</i> , 2002 , 35, 460-463	1.2	36
244	Electromagnetic wave propagation in the wire medium: a complex medium with long thin inclusions. <i>Wave Motion</i> , 2001 , 34, 301-317	1.8	36
243	Temporal aiming. <i>Light: Science and Applications</i> , 2020 , 9, 129	16.7	36
242	Nanoscale plasmonic circulator. New Journal of Physics, 2013, 15, 083054	2.9	35
241	Experimental Demonstration of a Millimeter-Wave Metallic ENZ Lens Based on the Energy Squeezing Principle. <i>IEEE Transactions on Antennas and Propagation</i> , 2015 , 63, 231-239	4.9	34
240	Extremely small wavevector regime in a one-dimensional photonic crystal heterostructure for angular transmission filtering. <i>Optics Letters</i> , 2016 , 41, 3829-32	3	34
239	μ៊-near-zero supercoupling. <i>Physical Review B</i> , 2015 , 91,	3.3	34
238	Transformation electronics: Tailoring the effective mass of electrons. <i>Physical Review B</i> , 2012 , 86,	3.3	34
237	Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry. <i>Physical Review Letters</i> , 2012 , 108, 193902	7.4	34
236	Transition radiation caused by a chiral plate. <i>IEEE Transactions on Antennas and Propagation</i> , 1982 , 30, 1213-1216		34
235	Air-stable, nanostructured electronic and plasmonic materials from solution-processable, silver nanocrystal building blocks. <i>ACS Nano</i> , 2014 , 8, 2746-54	16.7	33
234	Zero-index structures as an alternative platform for quantum optics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 822-827	11.5	32
233	Applied physics. Antenna-guided light. <i>Science</i> , 2011 , 334, 317-8	33.3	32
232	Taming light at the nanoscale. <i>Physics World</i> , 2010 , 23, 31-34	0.5	32
231	Chirostrip Antenna: Line Source Problem. <i>Journal of Electromagnetic Waves and Applications</i> , 1992 , 6, 771-793	1.3	32

230	. IEEE Transactions on Microwave Theory and Techniques, 1993 , 41, 1895-1906	4.1	32
229	Effective medium concept in temporal metamaterials. <i>Nanophotonics</i> , 2020 , 9, 379-391	6.3	32
228	Hotspots from nonreciprocal surface waves. <i>Optics Letters</i> , 2014 , 39, 1760-3	3	31
227	Guided propagation along quadrupolar chains of plasmonic nanoparticles. <i>Physical Review B</i> , 2009 , 79,	3.3	31
226	Modeling vanadium dioxide phase transition due to continuous-wave optical signals. <i>Optics Express</i> , 2015 , 23, 445-51	3.3	30
225	Extreme and Quantized Magneto-optics with Graphene Meta-atoms and Metasurfaces. <i>ACS Photonics</i> , 2014 , 1, 1068-1073	6.3	30
224	Cloaking mechanism with antiphase plasmonic satellites. <i>Physical Review B</i> , 2008 , 78,	3.3	30
223	Nanoinsulators and nanoconnectors for optical nanocircuits. <i>Journal of Applied Physics</i> , 2008 , 103, 0643	0 255	30
222	Bioinspired Focal-Plane Polarization Image Sensor Design: From Application to Implementation. <i>Proceedings of the IEEE</i> , 2014 , 102, 1435-1449	14.3	29
221	Lensing system and Fourier transformation using epsilon-near-zero metamaterials. <i>Physical Review B</i> , 2012 , 86,	3.3	29
220	Adaptive Polarization Contrast Techniques for Through-Wall Microwave Imaging Applications. <i>IEEE Transactions on Geoscience and Remote Sensing</i> , 2009 , 47, 1362-1374	8.1	29
219	Parallel, series, and intermediate interconnections of optical nanocircuit elements 2 Nanocircuit and physical interpretation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 3014	1.7	29
218	Imaging and Steering Unidirectional Emission from Nanoantenna Array Metasurfaces. <i>ACS Photonics</i> , 2016 , 3, 286-292	6.3	28
217	Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking. <i>New Journal of Physics</i> , 2008 , 10, 115036	2.9	27
216	Effect of chirality on the Doppler shift and aberration of light waves. <i>Journal of Applied Physics</i> , 1989 , 66, 2274-2277	2.5	27
215	Metamaterials with high degrees of freedom: space, time, and more. <i>Nanophotonics</i> , 2020 , 10, 639-642	6.3	27
214	General class of metamaterial transformation slabs. <i>Physical Review B</i> , 2010 , 81,	3.3	26
213	Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer. <i>Physical Review B</i> , 2011 , 83,	3.3	26

Coupling of optical lumped nanocircuit elements and effects of substrates. Optics Express, 2007, 15, 13865-76 25

211	A note on fractional calculus and the image method for dielectric spheres. <i>Journal of Electromagnetic Waves and Applications</i> , 1995 , 9, 1179-1188	1.3	25
210	Spherical chirolenses. <i>Optics Letters</i> , 1990 , 15, 299	3	25
209	Nanoimprinted Chiral Plasmonic Substrates with Three-Dimensional Nanostructures. <i>Nano Letters</i> , 2018 , 18, 7389-7394	11.5	25
208	Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 2878-2883	11.5	24
207	Reconfigurable epsilon-near-zero metasurfaces via photonic doping. <i>Nanophotonics</i> , 2018 , 7, 1117-1127	'6.3	24
206	Salient Features of Deeply Subwavelength Guiding of Terahertz Radiation in Graphene-Coated Fibers. <i>ACS Photonics</i> , 2016 , 3, 737-742	6.3	24
205	Zero-Index Platforms: Where Light Defies Geometry. Optics and Photonics News, 2016, 27, 26	1.9	24
204	Effective medium approach to electron waves: Graphene superlattices. <i>Physical Review B</i> , 2012 , 85,	3.3	23
203	On the performance of an ENZ-based sensor using transmission line theory and effective medium approach. <i>New Journal of Physics</i> , 2019 , 21, 043056	2.9	22
202	Supercoupling of surface waves with $\overline{\mu}$ -near-zero metastructures. <i>Physical Review B</i> , 2014 , 90,	3.3	22
201	Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling [Invited]. <i>Optical Materials Express</i> , 2017 , 7, 415	2.6	22
200	Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials. <i>Nature Communications</i> , 2020 , 11, 3733	17.4	22
199	?-near-zero (ENZ) graded index quasi-optical devices: steering and splitting millimeter waves. Journal of Optics (United Kingdom), 2014 , 16, 094009	1.7	21
198	Spatial delocalization and perfect tunneling of matter waves: electron perfect lens. <i>Physical Review Letters</i> , 2013 , 110, 213902	7.4	21
197	Dispersion engineering via nonlocal transformation optics. <i>Optica</i> , 2016 , 3, 179	8.6	21
196	Optical nanoswitch: an engineered plasmonic nanoparticle with extreme parameters and giant anisotropy. <i>New Journal of Physics</i> , 2009 , 11, 013026	2.9	20
195	Display of polarization information by coherently moving dots. <i>Optics Express</i> , 2003 , 11, 1577-84	3.3	20

(2005-2007)

194	Core-Shell Nanowire Optical Antennas Fed by Slab Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 3018-3026	4.9	19	
193	Substrate-integrated photonic doping for near-zero-index devices. <i>Nature Communications</i> , 2019 , 10, 4132	17.4	18	
192	Structural dispersion-based reduction of loss in epsilon-near-zero and surface plasmon polariton waves. <i>Science Advances</i> , 2019 , 5, eaav3764	14.3	18	
191	Evanescent growth and tunneling through stacks of frequency-selective surfaces. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2005 , 4, 417-420	3.8	18	
190	Capacitor-Inspired Metamaterial Inductors. <i>Physical Review Applied</i> , 2018 , 10,	4.3	18	
189	One-atom-thick reflectors for surface plasmon polariton surface waves on graphene. <i>Optics Communications</i> , 2012 , 285, 3428-3430	2	17	
188	Higher-order resonant power flow inside and around superdirective plasmonic nanoparticles. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, A89	1.7	17	
187	Parallel, series, and intermediate interconnections of optical nanocircuit elements 1 Analytical solution. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 3007	1.7	17	
186	Novel rotational characteristics of radiation patterns of chirostrip dipole antennas. <i>Microwave and Optical Technology Letters</i> , 1992 , 5, 31-34	1.2	17	
185	Fundamental Radiative Processes in Near-Zero-Index Media of Various Dimensionalities. <i>ACS Photonics</i> , 2020 , 7, 1965-1970	6.3	17	
184	Nonreciprocal Emission in Magnetized Epsilon-Near-Zero Metamaterials. ACS Photonics, 2019, 6, 581-5	866.3	16	
183	Optical isolation via unidirectional resonant photon tunneling. Journal of Applied Physics, 2014, 115, 04	3107	16	
182	Optical frequency mixing through nanoantenna enhanced difference frequency generation: Metatronic mixer. <i>Physical Review B</i> , 2012 , 86,	3.3	16	
181	Metamaterials: Fundamentals and Applications in the Microwave and Optical Regimes [Scanning the Issue]. <i>Proceedings of the IEEE</i> , 2011 , 99, 1618-1621	14.3	16	
180	Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, 213	32 ^{1.7}	16	
179	Analytical study of spherical cloak/anti-cloak interactions. Wave Motion, 2011, 48, 455-467	1.8	16	
178	Optical 'shorting wires'. Optics Express, 2007, 15, 13773-82	3.3	16	
177	Peano high-impedance surfaces. <i>Radio Science</i> , 2005 , 40, n/a-n/a	1.4	16	

176	A step towards determining transient response of chiral materials: Kramers K ronig relations for chiral parameters. <i>Electronics Letters</i> , 1990 , 26, 2132	1.1	16
175	Experimental verification of Waveguide lplasmonics. New Journal of Physics, 2017, 19, 123017	2.9	15
174	General Impedance Matching via Doped Epsilon-Near-Zero Media. <i>Physical Review Applied</i> , 2020 , 13,	4.3	15
173	Coupling and guided propagation along parallel chains of plasmonic nanoparticles. <i>New Journal of Physics</i> , 2011 , 13, 033026	2.9	15
172	Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation. <i>Physical Review B</i> , 2006 , 74,	3.3	15
171	An Overview of Salient Properties of Planar Guided-Wave Structures with Double-Negative (DNG) and Single-Negative (SNG) Layers 2005 , 339-380		15
170	Use of Fractional Integration to Propose Some ''Fractional" Solutions for the Scalar Helmholtz Equation. <i>Progress in Electromagnetics Research</i> , 1996 , 12, 107-132	3.8	15
169	NEMS With Broken T Symmetry: Graphene Based Unidirectional Acoustic Transmission Lines. <i>Scientific Reports</i> , 2015 , 5, 9926	4.9	14
168	Optical Metamaterials Based on Optical Nanocircuits. <i>Proceedings of the IEEE</i> , 2011 , 99, 1669-1681	14.3	14
167	Switching capability of double-sided grating with horizontal shift. <i>Applied Physics Letters</i> , 2010 , 97, 053	1984	14
166	On fractional paradigm and intermediate zones in electromagnetism: IPlanar observation. <i>Microwave and Optical Technology Letters</i> , 1999 , 22, 236-241	1.2	14
165	On fractional paradigm and intermediate zones in electromagnetism: II. Cylindrical and spherical observations. <i>Microwave and Optical Technology Letters</i> , 1999 , 23, 100-103	1.2	14
164	A single inverse-designed photonic structure that performs parallel computing. <i>Nature Communications</i> , 2021 , 12, 1466	17.4	14
163	Plasmonic and new plasmonic materials: general discussion. <i>Faraday Discussions</i> , 2015 , 178, 123-49	3.6	13
162	Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks. <i>Optics Express</i> , 2014 , 22, 25109-19	3.3	13
161	One-Way Waveguides Connected to One-Way Loads. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2012 , 11, 1398-1401	3.8	13
160	Role of propagating modes in a double-groove grating with a +1st-order diffraction angle larger than the substrate-air critical angle. <i>Optics Letters</i> , 2010 , 35, 3973-5	3	13
159	Emission Enhancement in a Plasmonic Waveguide at Cut-Off. <i>Materials</i> , 2011 , 4, 141-152	3.5	13

(2012-2006)

158	Physical insight into the "growing" evanescent fields of double-negative metamaterial lenses using their circuit equivalence. <i>IEEE Transactions on Antennas and Propagation</i> , 2006 , 54, 268-272	4.9	13
157	Phase and amplitude of fractional-order intermediate wave. <i>Microwave and Optical Technology Letters</i> , 1999 , 21, 338-343	1.2	13
156	Functional analysis of the polarization response in linear time-varying media: A generalization of the Kramers-Kronig relations. <i>Physical Review B</i> , 2021 , 103,	3.3	13
155	Time-varying materials in the presence of dispersion: plane-wave propagation in a Lorentzian medium with temporal discontinuity. <i>Photonics Research</i> , 2021 , 9, 1842	6	13
154	Enhanced Faraday rotation via resonant tunnelling in tri-layers containing magneto-optical metals. Journal Physics D: Applied Physics, 2014 , 47, 025002	3	12
153	Wormhole for electron waves in graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	12
152	Probing polarization and dielectric function of molecules with higher order harmonics in scattering Bear-field scanning optical microscopy. <i>Journal of Applied Physics</i> , 2009 , 106, 114307	2.5	12
151	Robustness in design and background variations in metamaterial/plasmonic cloaking. <i>Radio Science</i> , 2008 , 43, n/a-n/a	1.4	12
150	FSS-Based EBG Surfaces351-376		12
149	The Measured Electric Field Spatial Distribution Within A Metamaterial Subwavelength Cavity Resonator. <i>IEEE Transactions on Antennas and Propagation</i> , 2007 , 55, 1781-1788	4.9	12
148	Theory of simultaneous control of orientation and translational motion of nanorods using positive dielectrophoretic forces. <i>Journal of Applied Physics</i> , 2005 , 98, 124314	2.5	12
147	Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. <i>Nanophotonics</i> , 2021 ,	6.3	12
146	Multiqubit subradiant states in N-port waveguide devices: Ū-and-Ehear-zero hubs and nonreciprocal circulators. <i>Physical Review A</i> , 2018 , 97,	2.6	11
145	Thin absorbers using space-filling curve artificial magnetic conductors. <i>Microwave and Optical Technology Letters</i> , 2009 , 51, 785-790	1.2	11
144	Brenkov radiation in chiral media. Journal of Applied Physics, 1990, 68, 4393-4398	2.5	11
143	Nonperturbative Effective Magnetic Nonlinearity in ENZ Media Doped with Kerr Dielectric Inclusions. <i>ACS Photonics</i> , 2019 , 6, 2823-2831	6.3	10
142	One-way surface states due to nonreciprocal light-line crossing. <i>New Journal of Physics</i> , 2015 , 17, 0630	14 .9	10
141	From RF Circuits to Optical Nanocircuits. <i>IEEE Microwave Magazine</i> , 2012 , 13, 100-113	1.2	10

140	Metamaterial-inspired model for electron waves in bulk semiconductors. <i>Physical Review B</i> , 2012 , 86,	3.3	10
139	Image sensor with focal plane polarization sensitivity 2008,		10
138	Introduction, History, and Selected Topics in Fundamental Theories of Metamaterials1-41		10
137	. IEEE Transactions on Microwave Theory and Techniques, 1994 , 42, 1690-1694	4.1	10
136	Metamaterials: Two Decades Past and Into Their Electromagnetics Future and Beyond. <i>IEEE Transactions on Antennas and Propagation</i> , 2020 , 68, 1232-1237	4.9	10
135	Near-zero-index media as electromagnetic ideal fluids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 24050-24054	11.5	10
134	Temperature-controlled acoustic surface waves. New Journal of Physics, 2016, 18, 103006	2.9	10
133	Spatiotemporal isotropic-to-anisotropic meta-atoms. <i>New Journal of Physics</i> , 2021 , 23, 095006	2.9	10
132	Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal. <i>Physical Review B</i> , 2014 , 90,	3.3	9
131	Compact leaky-wave components using metamaterial bilayers 2005,		9
130	Fractional curl operator in reflection problems		9
129	Anomalous mode coupling in guided-wave structures containing metamaterials with negative permittivity and permeability		9
128	Non-Hermitian doping of epsilon-near-zero media. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 13921-13928	11.5	8
127	Dispersion synthesis with multi-ordered metatronic filters. <i>Optics Express</i> , 2017 , 25, 1937-1948	3.3	8
126	Ultralight Angstrom-Scale Optimal Optical Reflectors. ACS Photonics, 2018, 5, 384-389	6.3	8
125	Metatronic analogues of the Wheatstone bridge. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, A72	1.7	8
124	Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells. <i>Optics Express</i> , 2012 , 20, 16104-12	3.3	8
123	Parallel-chain optical transmission line for a low-loss ultraconfined light beam. <i>Physical Review B</i> , 2009 , 80,	3.3	8

122	Dispersion Characteristics of Metamaterial Cloaking Structures. <i>Electromagnetics</i> , 2008 , 28, 464-475	0.8	8
121	Is Foster's reactance theorem satisfied in double-negative and single-negative media?. <i>Microwave and Optical Technology Letters</i> , 2003 , 39, 11-14	1.2	8
120			8
119	Chirostrip Antenna: Line Source Problem. <i>Journal of Electromagnetic Waves and Applications</i> , 1992 , 6, 771-793	1.3	8
118	A Fully Integrated Sensor-BrainMachine Interface System for Restoring Somatosensation. <i>IEEE Sensors Journal</i> , 2021 , 21, 4764-4775	4	8
117	OPTICS. 150 years of Maxwell's equations. <i>Science</i> , 2015 , 349, 136-7	33.3	7
116	Giant nonlinearity in zero-gap semiconductor superlattices. <i>Physical Review B</i> , 2014 , 89,	3.3	7
115	Experimental investigation of double-groove grating satisfying total internal reflection condition. <i>Optics Express</i> , 2014 , 22, 25362-70	3.3	7
114	Guidance Properties of Plasmonic Nanogrooves: Comparison Between the Effective Index Method and the Finite Integration Technique. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2011 , 10, 199-202	3.8	7
113	Arm-edge conditions in plasmonic folded dipole nanoantennas. <i>Optics Express</i> , 2011 , 19, 12325-35	3.3	7
112	Polarization-based non-staining cell detection. <i>Optics Express</i> , 2012 , 20, 25378-90	3.3	7
111	Numerical study of polarization-dependent focusing for a bilayer planar FSS reflective lens at millimeter wavelengths. <i>Microwave and Optical Technology Letters</i> , 2004 , 40, 361-365	1.2	7
110	Metamaterials with negative permittivity and permeability: background, salient features, and new trend	ds	7
109	Effect of Chiral Material Loss on Guided Electromagnetic Modes in Parallel-Plate Chirowaveguides. Journal of Electromagnetic Waves and Applications, 1993 , 7, 1307-1321	1.3	7
108	Modal Analysis for Rectangular Chirowaveguides with Metallic Walls Using the Finite-Difference Method. <i>Journal of Electromagnetic Waves and Applications</i> , 1992 , 6, 1277-1285	1.3	7
107	. IEEE Transactions on Microwave Theory and Techniques, 1993 , 41, 1878-1886	4.1	7
106	Topological Insulator Antenna Arrays. ACS Photonics, 2020 , 7, 2244-2251	6.3	7
105	Extreme-Parameter Non-Hermitian Dielectric Metamaterials. ACS Photonics, 2020, 7, 2578-2588	6.3	7

104	Magnetic field concentration assisted by epsilon-near-zero media. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2017 , 375,	3	6
103	Possibility for inhibited spontaneous emission in electromagnetically open parity-time-symmetric guiding structures. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5576-5581	11.5	6
102	Nonlinear metamaterial absorbers enabled by photonic doping of epsilon-near-zero metastructures. <i>Physical Review B</i> , 2020 , 102,	3.3	6
101	Metatronic transistor amplifier. <i>Physical Review B</i> , 2015 , 92,	3.3	6
100	A Monolithic CMOS Image Sensor With Wire-Grid Polarizer Filter Mosaic in the Focal Plane. <i>IEEE Transactions on Electron Devices</i> , 2014 , 61, 855-862	2.9	6
99	Design of a monolithic CMOS image sensor integrated focal plane wire-grid polarizer filter mosaic 2012 ,		6
98	One-Atom-Thick Metamaterials and Transformation Optics with Graphene. <i>Optics and Photonics News</i> , 2011 , 22, 44	1.9	6
97	Sampling and squeezing electromagnetic waves through subwavelength ultranarrow regions or openings. <i>Physical Review B</i> , 2012 , 85,	3.3	6
96	Advances in integrated polarization image sensors 2009,		6
95	Image sensor with focal plane extraction of polarimetric information		6
94	Fundamentals of Waveguide and Antenna Applications Involving DNG and SNG Metamaterials43-85		6
94 93	Fundamentals of Waveguide and Antenna Applications Involving DNG and SNG Metamaterials43-85 Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008	1.7	5
	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of</i>	1.7	
93	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008 Nanocircuit Loading of Plasmonic Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> ,		5
93 92	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008 Nanocircuit Loading of Plasmonic Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 4381-4390 Genetically Optimized Metasurface Pairs for Wideband Out-of-Phase Mutual Response. <i>IEEE</i>	4.9	5
93 92 91	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008 Nanocircuit Loading of Plasmonic Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 4381-4390 Genetically Optimized Metasurface Pairs for Wideband Out-of-Phase Mutual Response. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2008 , 7, 788-791	4.9	555
93 92 91 90	Enabling a new degree of wave control with metamaterials: a personal perspective. <i>Journal of Optics (United Kingdom)</i> , 2017 , 19, 084008 Nanocircuit Loading of Plasmonic Waveguides. <i>IEEE Transactions on Antennas and Propagation</i> , 2012 , 60, 4381-4390 Genetically Optimized Metasurface Pairs for Wideband Out-of-Phase Mutual Response. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2008 , 7, 788-791 Small dipole-antenna near Peano high-impedance surfaces 2004 ,	4.9	5 5 5

86	Nano-wire dual layer polarization filter 2009 ,		4
85	Anomalies of subdiffractive guided wave propagation along metamaterial nanocomponents. <i>Radio Science</i> , 2007 , 42,	1.4	4
84	Nanocircuit elements, nano-transmission lines and nano-antennas using plasmonic materials in the optical domain		4
83	Nanotechnology and Active Thin Films for Compact RF Components and Agile Systems. <i>Ferroelectrics</i> , 2006 , 342, 163-182	0.6	4
82	DNG, SNG, ENZ and MNZ Metamaterials and Their Potential Applications		4
81	Waveguide Experiments to Characterize Properties of SNG and DNG Metamaterials87-111		4
80	Mutual coupling in finite-length thin wire chirostrip antennas. <i>Microwave and Optical Technology Letters</i> , 1993 , 6, 671-675	1.2	4
79	Field Uniformity Criteria for the Design of a Two-Wire EMP Simulator. <i>Electromagnetics</i> , 1988 , 8, 29-35	0.8	4
78	Reply: Chirosorblas an invisible medium. <i>Electronics Letters</i> , 1989 , 25, 1060	1.1	4
77	All-metallic epsilon-near-zero graded-index converging lens at terahertz frequencies 2018,		4
76	Design of a low power impulse-radio ultra-wide band wireless electrogoniometer 2015,		3
75	Optical emission near a high-impedance mirror. <i>Nature Communications</i> , 2018 , 9, 3224	17.4	3
74	Dipole-dipole interactions mediated by epsilon-and-mu-near-zero waveguide supercoupling: publisher日 note. <i>Optical Materials Express</i> , 2017 , 7, 1096	2.6	3
73	Asymmetrical Diffusion through Time-Varying Material Parameters 2017,		3
72	Incident angle dependency of propagating modes in rectangular grating for polarization-independent IST order diffraction or polarization splitting. <i>Microwave and Optical Technology Letters</i> , 2010 , 52, 1362-1369	1.2	3
71	Metamaterial inclusions based on grid-graph Hamiltonian paths. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 2520-2524	1.2	3
70	Miniaturized circular patch antenna with metamaterial loading 2006,		3
69	Review of Theory, Fabrication, and Applications of High-Impedance Ground Planes285-311		3

68	Radiation characteristics of microstrip dipole antennas over a high-impedance metamaterial surface made of Hilbert inclusions		3
67	Metamaterial bilayers for enhancement of wave transmission through a small hole in a flat perfectly conducting screen 2004 ,		3
66	Reflection from a lossy chiral slab (with and without metallic backing) in a parallel plate waveguide. <i>Radio Science</i> , 1995 , 30, 827-834	1.4	3
65	Soft surfaces and enhanced nonlinearity enabled via epsilon-near-zero media doped with zero-area perfect electric conductor inclusions. <i>Optics Letters</i> , 2020 , 45, 4591-4594	3	3
64	Nonreciprocal guided waves in the presence of swift electron beams. <i>Physical Review B</i> , 2021 , 103,	3.3	3
63	Momentum considerations inside near-zero index materials <i>Light: Science and Applications</i> , 2022 , 11, 110	16.7	3
62	Young Double-Slit, Invisible Objects and the Role of Noise in an Optical Epsilon-near-Zero Experiment. <i>ACS Photonics</i> , 2017 , 4, 2566-2572	6.3	2
61	Electromagnetic Funnel: Reflectionless Transmission and Guiding of Waves through Subwavelength Apertures. <i>Physical Review Letters</i> , 2020 , 124, 033901	7.4	2
60	Correction to Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. <i>ACS Photonics</i> , 2016 , 3, 2000-2002	6.3	2
59	The Role of Commercial Simulators and Multidisciplinary Training in Graduate-Level Electromagnetics Education [Education Corner]. <i>IEEE Antennas and Propagation Magazine</i> , 2017 , 59, 127-	-1 30	2
58	Extremely anisotropic boundary conditions and their optical applications. Radio Science, 2011, 46, n/a-n/	a .4	2
57	PLASMONIC CLOAKING: SCATTERING CANCELLATION WITHOUT ISOLATION 2011 , 263-283		2
56	A transformation-optics-inspired route to sensor invisibility based on cloak/anti-cloak interactions 2010 ,		2
55	Frequency Response of a Gangbuster-Surface Off-set Reflectarray Antenna 2006,		2
54	Refraction Experiments in Waveguide Environments113-140		2
53	Polarization enhanced visual surveillance techniques		2
52	Mutual coupling effects in space-filling-curve antennas		2
51	Fractionalization methods and their applications to radiation and scattering problems		2

50	Fractional derivatives, fractional integrals and electromagnetic theory		2
49	Corrections to "Modal Analysis for Rectangular Chirowaveguides with Metallic Walls Using the Finite-Difference Method," by P. Pelet and N. Engheta, Vol. 6, No. 9, 1277-1285, 1992. <i>Journal of Electromagnetic Waves and Applications</i> , 1995 , 9, 285-285	1.3	2
48	Field dependence of the optical activity of a chiral liquid crystal near the isotropic mectic A transition. <i>Liquid Crystals</i> , 1993 , 14, 1439-1443	2.3	2
47	Curved Space Nanophotonics Inspired by General Relativity 2016 ,		2
46	Fractional curl operator in electromagnetics 1998 , 17, 86		2
45	Two cases of spatial transformations. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2015 , 373,	3	1
44	Microwave analogues of multi-ordered metatronic filters with waveguide metamaterials 2016,		1
43	2014,		1
42	Extreme magneto-optics with graphene metasurfaces 2014,		1
41	Nonreciprocal passive metastructure without magnetic bias 2013,		1
40	Transparent metasurface with prescribed aperture field 2017,		1
39	SIMULATING WAVE PHENOMENA IN LARGE GRADED-PATTERN ARRAYS WITH RANDOM PERTURBATION. <i>Progress in Electromagnetics Research</i> , 2015 , 154, 127-141	3.8	1
38	Peculiar terminals in light at the extreme. Faraday Discussions, 2015, 178, 37-44	3.6	1
37	Design of a current mode polarization arithmetic analyzer 2014 ,		1
36	Antenna matching in $\bar{\mu}$ -near-zero metamaterial channels 2009 ,		1
35	Introduction to the Special Issue on Metamaterials. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 363-366	3.8	1
34	Squeezing electromagnetic energy through narrow 3-D coaxial channels of arbitrary shape filled with Epsilon-Near-Zero materials 2007 ,		1
33	Metamaterials for transparency and total scattering reduction 2007,		1

32	Metamaterials in the far infrared: ideas for left-handed metamaterials and micro- and nanocircuit elements in the terahertz regime 2006 ,		1
31	Radiation Characteristics and Beam Forming of Multi-Particle Nanoantennas at Optical Frequencies		1
30	Superprism Effects and EBG Antenna Applications261-283		1
29	Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs <i>Optics Letters</i> , 2022 , 47, 1319-1322	3	1
28	3D Nanophotonic Structures Constructed in a Curved Space Inspired by General Relativity Concepts 2016 ,		1
27	Inverse designed metagratings for far-field integral equations solving 2020,		1
26	Tailoring of modal losses in anisotropic 2D material ribbons by regulating material absorption. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2020 , 37, 3681	1.7	1
25	From Plasmonic Nanocircuit Elements to Volumetric Photonic Negative-Refraction Metamaterials 2006 ,		1
24	Extreme Platforms for Metaphotonics 2017,		1
23	Can Optical Nanoantenna Links Compete with Plasmonic Waveguide Connections? 2009,		1
22	Transformation-Based Cloak/Anti-Cloak Interactions: A Review 2014 , 167-190		1
21	Antireflection temporal coatings: reply. <i>Optica</i> , 2021 , 8, 826	8.6	1
20	Structuring band-pass dispersion with cascaded high- and low-pass optical metatronic metasurfaces 2016 ,		1
19	Solving integral equations with inverse-designed metagratings at optical wavelengths 2021,		1
18	Salient Features of Temporal and Spatio-Temporal Metamaterials 2018,		1
17	How does light behave in a material whose refractive index vanishes?. <i>Physics Today</i> , 2022 , 75, 62-63	0.9	1
17 16	How does light behave in a material whose refractive index vanishes?. <i>Physics Today</i> , 2022 , 75, 62-63 Space-Filling Curve High-Impedance Ground Planes377-402	0.9	0

LIST OF PUBLICATIONS

14	Dependence of the Efficiency of the Nonlinear-Optical Response of Materials on their Linear Permittivity and Permeability. <i>Laser and Photonics Reviews</i> ,2100032	8.3	O
13	Experimental demonstration of deeply subwavelength dielectric sensing with epsilon-near-zero (ENZ) waveguides. <i>Applied Physics Letters</i> , 2022 , 120, 081106	3.4	Ο
12	In pursuit of waves. <i>Nature Nanotechnology</i> , 2017 , 12, 394	28.7	
11	Selected Applications of Transformation Electromagnetics. <i>Advances in Science and Technology</i> , 2010 , 75, 246-255	0.1	
10	Optical Nanoelectronics with Metamaterials 2006 , ThA1		
9	New Technology Directions Committee Report - Call for Special Sessions for the 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. <i>IEEE Antennas and Propagation Magazine</i> , 2007 , 49, 176-177	1.7	
8	Now procedure for organizing special sessions at the IEEE AP-S/URSI/USNC Symposia. <i>IEEE Antennas and Propagation Magazine</i> , 2005 , 47, 130-130	1.7	
7	Microwave Coupler and Resonator Applications of NRI Planar Structures191-210		
6	Antenna Applications and Subwavelength Focusing Using Negative-Refractive-Index Transmission Line Structures141-169		
5	Resonance Cone Antennas171-190		
4	Historical Perspective and Review of Fundamental Principles in Modeling Three-Dimensional Periodic Structures with Emphasis on Volumetric EBGs211-238		
3	Fabrication, Experimentation, and Applications of EBG Structures239-259		
2	Reply: A step towards determining transient response of chiral materials: Kramers-Kronig relations for chiral parameters. <i>Electronics Letters</i> , 1991 , 27, 868-869	1.1	
1	Surface Electromagnetics: With Applications in Antennas, Microwave, and Optical Engineering [Book Review]. <i>IEEE Antennas and Propagation Magazine</i> , 2020 , 62, 138-139	1.7	