
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8722093/publications.pdf Version: 2024-02-01

Ριμέμ Υλής

#	Article	IF	CITATIONS
1	Label-free differentiation and quantification of ricin, abrin from their agglutinin biotoxins by surface plasmon resonance. Talanta, 2022, 238, 122860.	2.9	10
2	The association between bisphenol A exposure and oxidative damage in rats/mice: A systematic review and meta-analysis. Environmental Pollution, 2022, 292, 118444.	3.7	11
3	Development and multi-center clinical trials of an up-converting phosphor technology-based point-of-care (UPT-POCT) assay for rapid COVID-19 diagnosis and prediction of protective effects. BMC Microbiology, 2022, 22, 42.	1.3	4
4	Evaluation of pathogenesis and biofilm formation ability of <i>Yersinia pestis</i> after 40-day exposure to simulated microgravity. International Journal of Astrobiology, 2022, 21, 96-109.	0.9	4
5	The Animal Origin of Major Human Infectious Diseases: What Can Past Epidemics Teach Us About Preventing the Next Pandemic?. Zoonoses, 2022, 2, .	0.5	14
6	Small Insertions and Deletions Drive Genomic Plasticity during Adaptive Evolution of Yersinia pestis. Microbiology Spectrum, 2022, , e0224221.	1.2	0
7	Metagenomics analysis of cultured mucosal bacteria from colorectal cancer and adjacent normal mucosal tissues. Journal of Medical Microbiology, 2022, 71, .	0.7	2
8	<i>Yersinia pestis</i> -Induced Mitophagy That Balances Mitochondrial Homeostasis and mROS-Mediated Bactericidal Activity. Microbiology Spectrum, 2022, 10, .	1.2	5
9	Development and evaluation of a serological test for diagnosis of COVID-19 with selected recombinant spike proteins. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 921-928.	1.3	11
10	Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Molecular and Cellular Proteomics, 2021, 20, 100066.	2.5	3
11	New Genotype of Yersinia pestis Found in Live Rodents in Yunnan Province, China. Frontiers in Microbiology, 2021, 12, 628335.	1.5	5
12	Highly Specific and Sensitive Detection of Yersinia pestis by Portable Cas12a-UPTLFA Platform. Frontiers in Microbiology, 2021, 12, 700016.	1.5	22
13	Computer-Aided Rational Engineering of Signal Sensitivity of Quorum Sensing Protein LuxR in a Whole-Cell Biosensor. Frontiers in Molecular Biosciences, 2021, 8, 729350.	1.6	4
14	Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
15	Human gut-derived B. longum subsp. longum strains protect against aging in a d-galactose-induced aging mouse model. Microbiome, 2021, 9, 180.	4.9	22
16	Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Communications Biology, 2021, 4, 1248.	2.0	10
17	Genetic diversity and transmission patterns of Burkholderia pseudomallei on Hainan island, China, revealed by a population genomics analysis. Microbial Genomics, 2021, 7, .	1.0	4
18	Altered Yersinia pestis virulence is associated with the small regulatoryÂRNA HmsA encoded on the plasmid pPCP1. Future Microbiology, 2020, 15, 1207-1215.	1.0	0

#	Article	IF	CITATIONS
19	Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid and quantitative detection of Coxiella burnetii phase I strains. BMC Microbiology, 2020, 20, 251.	1.3	6
20	Seven facts and five initiatives for gut microbiome research. Protein and Cell, 2020, 11, 391-400.	4.8	21
21	Metagenomics Study Reveals Changes in Gut Microbiota in Centenarians: A Cohort Study of Hainan Centenarians. Frontiers in Microbiology, 2020, 11, 1474.	1.5	36
22	Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Neglected Tropical Diseases, 2020, 14, e0008046.	1.3	16
23	The Genome of the Great Gerbil Reveals Species-Specific Duplication of an MHCII Gene. Genome Biology and Evolution, 2020, 12, 3832-3849.	1.1	5
24	Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nature Communications, 2020, 11, 281.	5.8	30
25	The canine gastrointestinal microbiota: early studies and research frontiers. Gut Microbes, 2020, 11, 635-654.	4.3	22
26	A novel electro-driven immunochromatography assay based on upconversion nanoparticles for rapid pathogen detection. Biosensors and Bioelectronics, 2020, 152, 112037.	5.3	22
27	Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes, 2020, 11, 807-819.	4.3	32
28	Calibration of an Upconverting Phosphor-Based Quantitative Immunochromatographic Assay for Detecting Yersinia pestis, Brucella spp., and Bacillus anthracis Spores. Frontiers in Cellular and Infection Microbiology, 2020, 10, 147.	1.8	5
29	The landscape of coadaptation in Vibrio parahaemolyticus. ELife, 2020, 9, .	2.8	14
30	Title is missing!. , 2020, 14, e0008046.		0
31	Title is missing!. , 2020, 14, e0008046.		0
32	Title is missing!. , 2020, 14, e0008046.		0
33	Title is missing!. , 2020, 14, e0008046.		0
34	Title is missing!. , 2020, 14, e0008046.		0
35	Title is missing!. , 2020, 14, e0008046.		0
36	Hfq Globally Binds and Destabilizes sRNAs and mRNAs in Yersinia pestis. MSystems, 2019, 4, .	1.7	7

3

#	Article	IF	CITATIONS
37	Genetic diversity, virulence factors and farm-to-table spread pattern of Vibrio parahaemolyticus food-associated isolates. Food Microbiology, 2019, 84, 103270.	2.1	38
38	Soft sweep development of resistance in Escherichia coli under fluoroquinolone stress. Journal of Microbiology, 2019, 57, 1056-1064.	1.3	0
39	Recent mixing of <i>Vibrio parahaemolyticus</i> populations. ISME Journal, 2019, 13, 2578-2588.	4.4	41
40	Historical and genomic data reveal the influencing factors on global transmission velocity of plague during the Third Pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11833-11838.	3.3	25
41	Human Macrophages Clear the Biovar Microtus Strain of Yersinia pestis More Efficiently Than Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2019, 9, 111.	1.8	2
42	Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System. Applied and Environmental Microbiology, 2019, 85, .	1.4	16
43	Yersinia pestis Interacts With SIGNR1 (CD209b) for Promoting Host Dissemination and Infection. Frontiers in Immunology, 2019, 10, 96.	2.2	23
44	Genomic epidemiological investigation of a Streptococcus suis outbreak in Guangxi, China, 2016. Infection, Genetics and Evolution, 2019, 68, 249-252.	1.0	16
45	QsvR integrates into quorum sensing circuit to control <scp> <i>Vibrio parahaemolyticus</i> </scp> virulence. Environmental Microbiology, 2019, 21, 1054-1067.	1.8	30
46	Protein Acetylation Mediated by YfiQ and CobB Is Involved in the Virulence and Stress Response of Yersinia pestis. Infection and Immunity, 2018, 86, .	1.0	21
47	Plague: Recognition, Treatment, and Prevention. Journal of Clinical Microbiology, 2018, 56, .	1.8	63
48	Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA. Brazilian Journal of Microbiology, 2018, 49, 128-137.	0.8	15
49	Bioluminescent tracing of a Yersinia pestis pCD1+-mutant and Yersinia pseudotuberculosis in subcutaneously infected mice. Microbes and Infection, 2018, 20, 166-175.	1.0	2
50	Autoregulation of ToxR and Its Regulatory Actions on Major Virulence Gene Loci in Vibrio parahaemolyticus. Frontiers in Cellular and Infection Microbiology, 2018, 8, 291.	1.8	32
51	BfvR, an AraC-Family Regulator, Controls Biofilm Formation and pH6 Antigen Production in Opposite Ways in Yersinia pestis Biovar Microtus. Frontiers in Cellular and Infection Microbiology, 2018, 8, 347.	1.8	9
52	An up-converting phosphor technology-based lateral flow assay for point-of-collection detection of morphine and methamphetamine in saliva. Analyst, The, 2018, 143, 4646-4654.	1.7	45
53	Genomic Variations in Probiotic Lactobacillus plantarum P-8 in the Human and Rat Gut. Frontiers in Microbiology, 2018, 9, 893.	1.5	21
54	Phenotypic and Molecular Genetic Characteristics of Yersinia pestis at an Emerging Natural Plague Focus, Junggar Basin, China. American Journal of Tropical Medicine and Hygiene, 2018, 98, 231-237.	0.6	18

#	Article	IF	CITATIONS
55	Upconversion Nanocrystals Mediated Lateral-Flow Nanoplatform for <i>in Vitro</i> Detection. ACS Applied Materials & Interfaces, 2017, 9, 3497-3504.	4.0	79
56	Yersinia pestis YopK Inhibits Bacterial Adhesion to Host Cells by Binding to the Extracellular Matrix Adaptor Protein Matrilin-2. Infection and Immunity, 2017, 85, .	1.0	10
57	Characterization of a novel class A carbapenemase PAD-1 from Paramesorhizobium desertii A-3-ET, a strain highly resistant to β-lactam antibiotics. Scientific Reports, 2017, 7, 8370.	1.6	4
58	IL-17A-dependent gut microbiota is essential for regulating diet-induced disorders in mice. Science Bulletin, 2017, 62, 1052-1063.	4.3	16
59	Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiology, 2017, 17, 86.	1.3	2
60	Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice. International Journal of Medical Microbiology, 2017, 307, 64-74.	1.5	20
61	Safety Evaluation of a Novel Strain of Bacteroides fragilis. Frontiers in Microbiology, 2017, 8, 435.	1.5	43
62	Multi-copy single-stranded DNA in Escherichia coli. Microbiology (United Kingdom), 2017, 163, 1735-1739.	0.7	4
63	Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139. PLoS ONE, 2017, 12, e0179937.	1.1	24
64	CRP Is an Activator of Yersinia pestis Biofilm Formation that Operates via a Mechanism Involving gmhA and waaAE-coaD. Frontiers in Microbiology, 2016, 7, 295.	1.5	21
65	Plasmid pPCP1-derived sRNA HmsA promotes biofilm formation of Yersinia pestis. BMC Microbiology, 2016, 16, 176.	1.3	16
66	Reciprocal regulation of <i>Yersinia pestis</i> biofilm formation and virulence by RovM and RovA. Open Biology, 2016, 6, 150198.	1.5	22
67	The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3. Cell Death and Disease, 2016, 7, e2519-e2519.	2.7	24
68	Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. Advances in Experimental Medicine and Biology, 2016, 918, 377-391.	0.8	5
69	Discovery of the Plague Pathogen: Lessons Learned. Advances in Experimental Medicine and Biology, 2016, 918, 27-33.	0.8	4
70	Taxonomy of Yersinia pestis. Advances in Experimental Medicine and Biology, 2016, 918, 35-78.	0.8	13
71	Yersinia pestis in the Age of Big Data. Advances in Experimental Medicine and Biology, 2016, 918, 257-272.	0.8	3
72	Influence of cAMP receptor protein (CRP) on bacterial virulence and transcriptional regulation of allS by CRP in Klebsiella pneumoniae. Gene, 2016, 593, 28-33.	1.0	14

#	Article	IF	CITATIONS
73	Reannotation of Yersinia pestis Strain 91001 Based on Omics Data. American Journal of Tropical Medicine and Hygiene, 2016, 95, 562-570.	0.6	11
74	Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid and quantitative detection of aflatoxin B1 in crops. Talanta, 2016, 161, 297-303.	2.9	69
75	Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods. Scientific Reports, 2016, 6, 22704.	1.6	16
76	Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Scientific Reports, 2016, 6, 21342.	1.6	144
77	Rapid detection of abrin in foods with an up-converting phosphor technology-based lateral flow assay. Scientific Reports, 2016, 6, 34926.	1.6	26
78	An Ebola virus-encoded microRNA-like fragment serves as a biomarker for early diagnosis of Ebola virus disease. Cell Research, 2016, 26, 380-383.	5.7	46
79	Recombinant murine toxin from Yersinia pestis shows high toxicity and β-adrenergic blocking activity in mice. Microbes and Infection, 2016, 18, 329-335.	1.0	4
80	Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone. Scientific Reports, 2015, 5, 15877.	1.6	57
81	RcsAB is a major repressor of Yersinia biofilm development through directly acting on hmsCDE, hmsT and hmsHFRS. Scientific Reports, 2015, 5, 9566.	1.6	47
82	Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid detection of Francisella tularensis. Scientific Reports, 2015, 5, 17178.	1.6	32
83	Multifaceted Modulation of SIRT1 in Cancer and Inflammation. Critical Reviews in Oncogenesis, 2015, 20, 49-64.	0.2	102
84	Intrinsic plasmids influence MicF-mediated translational repression of ompF in Yersinia pestis. Frontiers in Microbiology, 2015, 6, 862.	1.5	9
85	Comparative Genomic Analysis of 45 Type Strains of the Genus Bifidobacterium: A Snapshot of Its Genetic Diversity and Evolution. PLoS ONE, 2015, 10, e0117912.	1.1	90
86	Avian influenza H5N1 viral and bird migration networks in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 172-177.	3.3	169
87	Detection of Bacillus anthracis spores by super-paramagnetic lateral-flow immunoassays based on "Road Closure― Biosensors and Bioelectronics, 2015, 67, 608-614.	5.3	84
88	Dendritic cell SIRT1–HIF1α axis programs the differentiation of CD4 ⁺ T cells through IL-12 and TGF-β1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E957-65.	3.3	95
89	CRP Acts as a Transcriptional Repressor of the YPO1635-phoPQ-YPO1632 Operon in Yersinia pestis. Current Microbiology, 2015, 70, 398-403.	1.0	7
90	MLST-based inference of genetic diversity and population structure of clinical Klebsiella pneumoniae, China. Scientific Reports, 2015, 5, 7612.	1.6	16

#	Article	IF	CITATIONS
91	TyrR, the regulator of aromatic amino acid metabolism, is required for mice infection of Yersinia pestis. Frontiers in Microbiology, 2015, 6, 110.	1.5	11
92	Spatial, temporal and genetic dynamics of highly pathogenic avian influenza A (H5N1) virus in China. BMC Infectious Diseases, 2015, 15, 54.	1.3	19
93	Transmission efficiency of the plague pathogen (Y. pestis) by the flea, Xenopsylla skrjabini, to mice and great gerbils. Parasites and Vectors, 2015, 8, 256.	1.0	13
94	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science & Technology, 2015, 49, 12080-12086.	4.6	405
95	Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science & Technology, 2015, 49, 12087-12093.	4.6	426
96	<i>Yersinia</i> protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton. Cellular Microbiology, 2015, 17, 473-485.	1.1	22
97	Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nature Communications, 2015, 6, 8322.	5.8	488
98	Epidemic Clones, Oceanic Gene Pools, and Eco-LD in the Free Living Marine Pathogen Vibrio parahaemolyticus. Molecular Biology and Evolution, 2015, 32, 1396-1410.	3.5	98
99	Mobile laboratory in Sierra Leone during outbreak of Ebola: practices and implications. Science China Life Sciences, 2015, 58, 918-921.	2.3	9
100	Sequence types diversity of Legionella pneumophila isolates from environmental water sources in Guangzhou and Jiangmen, China. Infection, Genetics and Evolution, 2015, 29, 35-41.	1.0	12
101	Locked Nucleic Acid Probe-Based Real-Time PCR Assay for the Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0143444.	1.1	22
102	Evaluation of Up-Converting Phosphor Technology-Based Lateral Flow Strips for Rapid Detection of Bacillus anthracis Spore, Brucella spp., and Yersinia pestis. PLoS ONE, 2014, 9, e105305.	1.1	41
103	Comparison of virulence between theYersinia pestis Microtus201, an avirulent strain to humans, and the vaccine strain EV in rhesus macaques,Macaca mulatta. Human Vaccines and Immunotherapeutics, 2014, 10, 3552-3560.	1.4	6
104	IL-17A Produced by Neutrophils Protects against Pneumonic Plague through Orchestrating IFN-γ–Activated Macrophage Programming. Journal of Immunology, 2014, 192, 704-713.	0.4	34
105	<i>Yersinia pestis</i> biovar <i>Microtus</i> strain 201, an avirulent strain to humans, provides protection against bubonic plague in rhesus macaques. Human Vaccines and Immunotherapeutics, 2014, 10, 368-377.	1.4	10
106	mTOR limits the recruitment of CD11b+Gr1+Ly6Chigh myeloid-derived suppressor cells in protecting against murine immunological hepatic injury. Journal of Leukocyte Biology, 2014, 95, 961-970.	1.5	47
107	HmsB enhances biofilm formation in Yersinia pestis. Frontiers in Microbiology, 2014, 5, 685.	1.5	22
108	Rapid Degradation of Hfq-Free RyhB in <i>Yersinia pestis</i> by PNPase Independent of Putative Ribonucleolytic Complexes. BioMed Research International, 2014, 2014, 1-7.	0.9	18

#	Article	IF	CITATIONS
109	H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Frontiers in Microbiology, 2014, 5, 675.	1.5	51
110	Targeting S1P1 Receptor Protects against Murine Immunological Hepatic Injury through Myeloid-Derived Suppressor Cells. Journal of Immunology, 2014, 192, 3068-3079.	0.4	43
111	Transcriptional regulation of the waaAE-coaD operon by PhoP and RcsAB in Yersinia pestis biovar Microtus. Protein and Cell, 2014, 5, 940-944.	4.8	14
112	Kinetics of Memory <scp>B</scp> Cell and Plasma Cell Responses in the Mice Immunized with Plague Vaccines. Scandinavian Journal of Immunology, 2014, 79, 157-162.	1.3	9
113	Pandora of Ebola virus: are we ready?. Science Bulletin, 2014, 59, 4235-4236.	1.7	0
114	Bioluminescent tracking of colonization and clearance dynamics of plasmid-deficient Yersinia pestis strains in a mouse model of septicemic plague. Microbes and Infection, 2014, 16, 214-224.	1.0	8
115	Transcriptional Regulation Mechanism of ter Operon by OxyR in Yersinia pestis. Current Microbiology, 2014, 69, 42-46.	1.0	6
116	A fiber optic biosensor for specific identification of dead Escherichia coli O157:H7. Sensors and Actuators B: Chemical, 2014, 196, 161-167.	4.0	15
117	A novel PCR-based genotyping scheme for clinical <i>Klebsiella pneumoniae</i> . Future Microbiology, 2014, 9, 21-32.	1.0	25
118	Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight. Advances in Space Research, 2014, 53, 18-29.	1.2	30
119	Influenza H7N9 and H9N2 Viruses: Coexistence in Poultry Linked to Human H7N9 Infection and Genome Characteristics. Journal of Virology, 2014, 88, 3423-3431.	1.5	93
120	Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nature Communications, 2014, 5, 3142.	5.8	145
121	Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries. Infection, Genetics and Evolution, 2014, 26, 172-179.	1.0	28
122	Transcriptomic Response to Yersinia pestis: RIG-I Like Receptor Signaling Response Is Detrimental to the Host against Plague. Journal of Genetics and Genomics, 2014, 41, 379-396.	1.7	18
123	Omics-based interpretation of synergism in a soil-derived cellulose-degrading microbial community. Scientific Reports, 2014, 4, 5288.	1.6	39
124	Two-Step Source Tracing Strategy of Yersinia pestis and Its Historical Epidemiology in a Specific Region. PLoS ONE, 2014, 9, e85374.	1.1	9
125	Genomic Evolution of 11 Type Strains within Family Planctomycetaceae. PLoS ONE, 2014, 9, e86752.	1.1	18
126	A Double-Taper Optical Fiber-Based Radiation Wave Other than Evanescent Wave in All-Fiber Immunofluorescence Biosensor for Quantitative Detection of Escherichia coli O157:H7. PLoS ONE, 2014, 9, e95429.	1.1	2

#	Article	IF	CITATIONS
127	Yersinia pestis. , 2014, , 403-412.		0
128	Live-attenuated <i>Yersinia pestis</i> vaccines. Expert Review of Vaccines, 2013, 12, 677-686.	2.0	49
129	A live attenuated strain of Yersinia pestis î"yscB provides protection against bubonic and pneumonic plagues in mouse model. Vaccine, 2013, 31, 2539-2542.	1.7	11
130	Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nature Communications, 2013, 4, 2151.	5.8	606
131	Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nature Genetics, 2013, 45, 1255-1260.	9.4	426
132	Rapid detection of Bacillus anthracis spores using a super-paramagnetic lateral-flow immunological detectionsystem. Biosensors and Bioelectronics, 2013, 42, 661-667.	5.3	83
133	Shiga toxin-producing Escherichia coli O104:H4: An emerging important pathogen in food safety. Science Bulletin, 2013, 58, 1625-1631.	1.7	2
134	A Rat Basophilic Leukaemia cell sensor for the detection of pathogenic viruses. Biosensors and Bioelectronics, 2013, 43, 412-418.	5.3	11
135	AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. International Journal of Food Microbiology, 2013, 160, 245-251.	2.1	87
136	A multi-omic analysis of an Enterococcus faecium mutant reveals specific genetic mutations and dramatic changes in mRNA and protein expression. BMC Microbiology, 2013, 13, 304.	1.3	14
137	Quorum sensing modulates transcription of cpsQ-mfpABC and mfpABC in Vibrio parahaemolyticus. International Journal of Food Microbiology, 2013, 166, 458-463.	2.1	33
138	Regulation of pathogenicity by noncoding RNAs in bacteria. Future Microbiology, 2013, 8, 579-591.	1.0	17
139	Cyclic AMP receptor protein is a repressor of adenylyl cyclase gene <i>cyaA</i> in <i>Yersinia pestis</i> . Canadian Journal of Microbiology, 2013, 59, 304-310.	0.8	10
140	Reciprocal regulation of pH 6 antigen gene loci by PhoP and RovA inYersinia pestisbiovarMicrotus. Future Microbiology, 2013, 8, 271-280.	1.0	18
141	Autoregulation of PhoP/PhoQ and Positive Regulation of the Cyclic AMP Receptor Protein-Cyclic AMP Complex by PhoP in Yersinia pestis. Journal of Bacteriology, 2013, 195, 1022-1030.	1.0	43
142	Outer Membrane Proteins Ail and OmpF of Yersinia pestis Are Involved in the Adsorption of T7-Related Bacteriophage Yep-phi. Journal of Virology, 2013, 87, 12260-12269.	1.5	42
143	Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 1817-1823.	0.8	28
144	Historical variations in mutation rate in an epidemic pathogen, <i>Yersinia pestis</i> . Proceedings of the United States of America, 2013, 110, 577-582.	3.3	373

#	Article	IF	CITATIONS
145	Whole-Genome Sequencing of Lactobacillus shenzhenensis Strain LY-73 T. Genome Announcements, 2013, 1, .	0.8	0
146	Yersinia pestis: mechanisms of entry into and resistance to the host cell. Frontiers in Cellular and Infection Microbiology, 2013, 3, 106.	1.8	41
147	Features of Variable Number of Tandem Repeats in Yersinia pestis and the Development of a Hierarchical Genotyping Scheme. PLoS ONE, 2013, 8, e66567.	1.1	22
148	Cell Density- and Quorum Sensing-Dependent Expression of Type VI Secretion System 2 in VibrioÂparahaemolyticus. PLoS ONE, 2013, 8, e73363.	1.1	29
149	Identification of Gene Clusters Associated with Host Adaptation and Antibiotic Resistance in Chinese Staphylococcus aureus Isolates by Microarray-Based Comparative Genomics. PLoS ONE, 2013, 8, e53341.	1.1	12
150	Identification of Novel Protein-Protein Interactions of Yersinia pestis Type III Secretion System by Yeast Two Hybrid System. PLoS ONE, 2013, 8, e54121.	1.1	15
151	Determination of sRNA Expressions by RNA-seq in Yersinia pestis Grown In Vitro and during Infection. PLoS ONE, 2013, 8, e74495.	1.1	58
152	Optimized methods for biofilm analysis in Yersinia pestis. Biomedical and Environmental Sciences, 2013, 26, 408-11.	0.2	21
153	Genome Sequence of Enterococcus faecium Clinical Isolate LCT-EF128. Journal of Bacteriology, 2012, 194, 4765-4765.	1.0	4
154	Draft Genome Sequence of Enterococcus faecium Strain LCT-EF90. Journal of Bacteriology, 2012, 194, 3556-3557.	1.0	2
155	Transcriptional Regulation of opaR, qrr2–4 and aphA by the Master Quorum-Sensing Regulator OpaR in Vibrio parahaemolyticus. PLoS ONE, 2012, 7, e34622.	1.1	72
156	Genome Sequences of Three Species in the Family Planctomycetaceae. Journal of Bacteriology, 2012, 194, 3740-3741.	1.0	29
157	Draft Genome Sequences of Two Legionella dumoffii Strains, TEX-KL and NY-23. Journal of Bacteriology, 2012, 194, 1251-1252.	1.0	13
158	Humoral and Cellular Immune Responses to Yersinia pestis Infection in Long-Term Recovered Plague Patients. Vaccine Journal, 2012, 19, 228-234.	3.2	32
159	Draft Genome Sequence of an Acinetobacter Genomic Species 3 Strain Harboring a blaNDM-1 Gene. Journal of Bacteriology, 2012, 194, 204-205.	1.0	17
160	Identification by cDNA cloning of abundant sRNAs in a human-avirulent <i>Yersinia pestis</i> strain grown under five different growth conditions. Future Microbiology, 2012, 7, 535-547.	1.0	20
161	Whole-Genome Sequence of Klebsiella pneumonia Strain LCT-KP214. Journal of Bacteriology, 2012, 194, 3281-3281.	1.0	9
162	Draft Genome Sequences of Two Streptococcus pyogenes Strains Involved in Abnormal Sharp Raised Scarlet Fever in China, 2011. Journal of Bacteriology, 2012, 194, 5983-5984.	1.0	3

#	Article	IF	CITATIONS
163	Acquisition of Maternal Antibodies both from the Placenta and by Lactation Protects Mouse Offspring from Yersinia pestis Challenge. Vaccine Journal, 2012, 19, 1746-1750.	3.2	13
164	Draft Genome Sequence of Yersinia pestis Strain 2501, an Isolate from the Great Gerbil Plague Focus in Xinjiang, China. Journal of Bacteriology, 2012, 194, 5447-5448.	1.0	4
165	Draft Genome Sequence of Serratia marcescens Strain LCT-SM213. Journal of Bacteriology, 2012, 194, 4477-4478.	1.0	7
166	The Yersinia pestis Rcs Phosphorelay Inhibits Biofilm Formation by Repressing Transcription of the Diguanylate Cyclase Gene <i>hmsT</i> . Journal of Bacteriology, 2012, 194, 2020-2026.	1.0	54
167	Parallel gene loss and acquisition among strains of different Brucella species and biovars. Journal of Microbiology, 2012, 50, 567-574.	1.3	8
168	Direct and Indirect Regulatory Mechanisms in TH17 cell Differentiation and Functions. Scandinavian Journal of Immunology, 2012, 75, 543-552.	1.3	24
169	Novel Plasmid and Its Variant Harboring both a <i>bla</i> _{NDM-1} Gene and Type IV Secretion System in Clinical Isolates of Acinetobacter Iwoffii. Antimicrobial Agents and Chemotherapy, 2012, 56, 1698-1702.	1.4	124
170	A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60.	13.7	5,345
171	A proteome reference map and virulence factors analysis of Yersinia pestis 91001. Journal of Proteomics, 2012, 75, 894-907.	1.2	22
172	<i>Yersinia pestis</i> Versus <i>Yersinia pseudotuberculosis</i> : Effects on Host Macrophages. Scandinavian Journal of Immunology, 2012, 76, 541-551.	1.3	6
173	Molecular Characterization of Direct Target Genes and cis-Acting Consensus Recognized by Quorum-Sensing Regulator AphA in Vibrio parahaemolyticus. PLoS ONE, 2012, 7, e44210.	1.1	50
174	Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed inÂvivo have differential Hfq-dependent stability. Research in Microbiology, 2012, 163, 413-418.	1.0	48
175	Altered Transcriptome of the B. melitensis Vaccine Candidate 16MΔvjbR, Implications for Development of Genetically Marked Live Vaccine. Indian Journal of Microbiology, 2012, 52, 575-580.	1.5	13
176	Dynamics of Yersinia pestis and Its Antibody Response in Great Gerbils (Rhombomys opimus) by Subcutaneous Infection. PLoS ONE, 2012, 7, e46820.	1.1	15
177	Omics strategies for revealing Yersinia pestis virulence. Frontiers in Cellular and Infection Microbiology, 2012, 2, 157.	1.8	13
178	Expression of the Type VI Secretion System 1 Component Hcp1 Is Indirectly Repressed by OpaR in <i>Vibrio parahaemolyticus</i> . Scientific World Journal, The, 2012, 2012, 1-7.	0.8	19
179	Fur Is a Repressor of Biofilm Formation in Yersinia pestis. PLoS ONE, 2012, 7, e52392.	1.1	52
180	Use of rich BHI medium instead of synthetic TMH medium for gene regulation study in Yersinia pestis. Biomedical and Environmental Sciences, 2012, 25, 639-44.	0.2	1

#	Article	IF	CITATIONS
181	Identification of the Shiga Toxin-Producing Escherichia coli O104:H4 Strain Responsible for a Food Poisoning Outbreak in Germany by PCR. Journal of Clinical Microbiology, 2011, 49, 3439-3440.	1.8	35
182	Transcriptional regulation of ompF2, an ompF paralogue, in Yersinia pestis. Canadian Journal of Microbiology, 2011, 57, 468-475.	0.8	5
183	Open-Source Genomic Analysis of Shiga-Toxin–Producing <i>E. coli</i> O104:H4. New England Journal of Medicine, 2011, 365, 718-724.	13.9	392
184	mTOR Regulates T-Cell Differentiation and Activation in Immunity and Autoimmunity. Critical Reviews in Eukaryotic Gene Expression, 2011, 21, 313-322.	0.4	11
185	Histopathological Observation of Immunized Rhesus Macaques with Plague Vaccines after Subcutaneous Infection of Yersinia pestis. PLoS ONE, 2011, 6, e19260.	1.1	13
186	Molecular Characterization of Transcriptional Regulation of rovA by PhoP and RovA in Yersinia pestis. PLoS ONE, 2011, 6, e25484.	1.1	32
187	Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiology, 2011, 11, 39.	1.3	52
188	Extended MLST-based population genetics and phylogeny of Vibrio parahaemolyticus with high levels of recombination. International Journal of Food Microbiology, 2011, 145, 106-112.	2.1	41
189	A novel genotyping scheme for Vibrio parahaemolyticus with combined use of large variably-presented gene clusters (LVPCs) and variable-number tandem repeats (VNTRs). International Journal of Food Microbiology, 2011, 149, 143-151.	2.1	10
190	DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosensors and Bioelectronics, 2011, 26, 3398-3404.	5.3	117
191	DNA microarray analysis of acid-responsive genes of Streptococcus suis serotype 2. Annals of Microbiology, 2011, 61, 505-510.	1.1	7
192	Formation and regulation of Yersinia biofilms. Protein and Cell, 2011, 2, 173-179.	4.8	47
193	Regulatory effects of cAMP receptor protein (CRP) on porin genes and its own gene in Yersinia pestis. BMC Microbiology, 2011, 11, 40.	1.3	61
194	Reciprocal modulation between TH17 and other helper T cell lineages. Journal of Cellular Physiology, 2011, 226, 8-13.	2.0	24
195	Use of protein microarray to identify gene expression changes of <i>Yersinia pestis</i> at different temperatures. Canadian Journal of Microbiology, 2011, 57, 287-294.	0.8	8
196	Microarray Analysis of Temperature-Induced Transcriptome ofStreptococcus suisSerotype 2. Vector-Borne and Zoonotic Diseases, 2011, 11, 215-221.	0.6	6
197	Serum Cytokine Responses in Primary Pneumonic Plague Patients. Vaccine Journal, 2011, 18, 184-186.	3.2	5
198	A Dog-Associated Primary Pneumonic Plague in Qinghai Province, China. Clinical Infectious Diseases, 2011, 52, 185-190.	2.9	65

#	Article	IF	CITATIONS
199	Insight into Bacterial Virulence Mechanisms against Host Immune Response via the Yersinia pestis-Human Protein-Protein Interaction Network. Infection and Immunity, 2011, 79, 4413-4424.	1.0	52
200	The complete genome sequence and proteomics of Yersinia pestis phage Yep-phi. Journal of General Virology, 2011, 92, 216-221.	1.3	32
201	Microbial Forensics: A Powerful Tool for Pursuing Bioterrorism Perpetrators and the Need for an International Database. Journal of Bioterrorism & Biodefense, 2011, 02, .	0.1	5
202	The low-salt stimulon in Vibrio parahaemolyticus. International Journal of Food Microbiology, 2010, 137, 49-54.	2.1	29
203	Cellular fatty acids as chemical markers for differentiation of Yersinia pestis and Yersinia pseudotuberculosis. Letters in Applied Microbiology, 2010, 50, 104-111.	1.0	11
204	Triplex realâ€ŧime PCR assay for detection and differentiation of <i>Bordetella pertussis</i> and <i>Bordetella parapertussis</i> . Apmis, 2010, 118, 685-691.	0.9	17
205	Comparison of Immunological Responses of Plague Vaccines F1 + rV270 and EV76 in Chinese-Origin Rhesus Macaque, Macaca mulatta. Scandinavian Journal of Immunology, 2010, 72, 425-433.	1.3	30
206	Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nature Genetics, 2010, 42, 1140-1143.	9.4	504
207	Cell Membrane Is Impaired, Accompanied by Enhanced Type III Secretion System Expression in Yersinia pestis Deficient in RovA Regulator. PLoS ONE, 2010, 5, e12840.	1.1	23
208	Long-Term Observation of Subunit Vaccine F1-rV270 against <i>Y ersinia pestis</i> in Mice. Vaccine Journal, 2010, 17, 199-201.	3.2	14
209	Ambient Stable Quantitative PCR Reagents for the Detection of Yersinia pestis. PLoS Neglected Tropical Diseases, 2010, 4, e629.	1.3	38
210	Development of an up-converting phosphor technology-based 10-channel lateral flow assay for profiling antibodies against Yersinia pestis. Journal of Microbiological Methods, 2010, 83, 133-140.	0.7	52
211	Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270. Vaccine, 2010, 28, 1655-1660.	1.7	32
212	Different Strategies for Preparation of Non-tagged rV270 Protein and Its Efficacy against Yersinia Pestis Challenge. Biomedical and Environmental Sciences, 2010, 23, 333-340.	0.2	1
213	Involvement of the Post-Transcriptional Regulator Hfq in Yersinia pestis Virulence. PLoS ONE, 2009, 4, e6213.	1.1	89
214	High-Throughput Identification of New Protective Antigens from a Yersinia pestis Live Vaccine by Enzyme-Linked Immunospot Assay. Infection and Immunity, 2009, 77, 4356-4361.	1.0	27
215	Microarray Expression Profiling of <i>Yersinia pestis</i> in Response to Berberine <i></i> . Planta Medica, 2009, 75, 396-398.	0.7	12
216	Draft Genome Sequences of Yersinia pestis Isolates from Natural Foci of Endemic Plague in China. Journal of Bacteriology, 2009, 191, 7628-7629.	1.0	16

#	Article	IF	CITATIONS
217	Molecular Darwinian Evolution of Virulence in <i>Yersinia pestis</i> . Infection and Immunity, 2009, 77, 2242-2250.	1.0	58
218	Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis. BMC Microbiology, 2009, 9, 128.	1.3	60
219	Direct and negative regulation of the sycO-ypkA-ypoJ operon by cyclic AMP receptor protein (CRP) in Yersinia pestis. BMC Microbiology, 2009, 9, 178.	1.3	28
220	MicroRNAs: Novel Regulators During the Immune Response. Journal of Cellular Physiology, 2009, 218, 467-472.	2.0	153
221	Transcriptional profiling of a mice plague model: insights into interaction between <i>Yersinia pestis</i> and its host. Journal of Basic Microbiology, 2009, 49, 92-99.	1.8	34
222	Genomic research for important pathogenic bacteria in China. Science in China Series C: Life Sciences, 2009, 52, 50-63.	1.3	6
223	Reduced Apoptosis of Mouse Macrophages Induced by <i>yscW</i> Mutant of <i>Yersinia pestis</i> Results from the Reduced Secretion of YopJ and Relates to Caspaseâ€3 Signal Pathway. Scandinavian Journal of Immunology, 2009, 70, 358-367.	1.3	8
224	<i>Yersinia pestis</i> and host macrophages: immunodeficiency of mouse macrophages induced by YscW. Immunology, 2009, 128, e406-17.	2.0	10
225	Cold-induced gene expression profiles of <i>Vibrio parahaemolyticus</i> : a time-course analysis. FEMS Microbiology Letters, 2009, 291, 50-58.	0.7	43
226	Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosensors and Bioelectronics, 2009, 24, 1330-1335.	5.3	126
227	Development of up-converting phosphor technology-based lateral-flow assay for rapidly quantitative detection of hepatitis B surface antibody. Diagnostic Microbiology and Infectious Disease, 2009, 63, 165-172.	0.8	63
228	Gene expression profiling of Yersinia pestis with deletion of lcrG, a known negative regulator for Yop secretion of type III secretion system. International Journal of Medical Microbiology, 2009, 299, 355-366.	1.5	16
229	Rapid and quantitative detection of Brucella by up-converting phosphor technology-based lateral-flow assay. Journal of Microbiological Methods, 2009, 79, 121-123.	0.7	64
230	A Simple Optical Reader for Upconverting Phosphor Particles Captured on Lateral Flow Strip. IEEE Sensors Journal, 2009, 9, 1185-1191.	2.4	23
231	Label-free detection of B. anthracis spores using a surface plasmon resonance biosensor. Analyst, The, 2009, 134, 738.	1.7	30
232	Simultaneous detection of five biothreat agents in powder samples by a multiplexed suspension array. Immunopharmacology and Immunotoxicology, 2009, 31, 417-427.	1.1	17
233	Comparative Proteomics Analyses Reveal the virB of B. melitensis Affects Expression of Intracellular Survival Related Proteins. PLoS ONE, 2009, 4, e5368.	1.1	42
234	Genotyping and Phylogenetic Analysis of Yersinia pestis by MLVA: Insights into the Worldwide Expansion of Central Asia Plague Foci. PLoS ONE, 2009, 4, e6000.	1.1	111

#	Article	IF	CITATIONS
235	Antibody profiling in plague patients by protein microarray. Microbes and Infection, 2008, 10, 45-51.	1.0	25
236	DNA microarray-based global transcriptional profiling of Yersinia pestis in multicellularity. Journal of Microbiology, 2008, 46, 557-563.	1.3	4
237	Proteome analysis of <i>Streptococcus suis</i> serotype 2. Proteomics, 2008, 8, 333-349.	1.3	48
238	Curing of four different plasmids in <i>Yersinia pestis</i> using plasmid incompatibility. Letters in Applied Microbiology, 2008, 47, 235-240.	1.0	32
239	Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus. BMC Genomics, 2008, 9, 143.	1.2	30
240	Genome plasticity of Vibrio parahaemolyticus: microevolution of the 'pandemic group'. BMC Genomics, 2008, 9, 570.	1.2	50
241	A new purification strategy for fraction 1 capsular antigen and its efficacy against Yersinia pestis virulent strain challenge. Protein Expression and Purification, 2008, 61, 7-12.	0.6	17
242	Design and Evaluation of a 16S rRNA Gene-based Oligonucleotide Micrroarray for Identification of Plant Associated Beneficial Bacteria (PABB). , 2008, , .		0
243	Interaction between <i>Yersinia pestis</i> and the Host Immune System. Infection and Immunity, 2008, 76, 1804-1811.	1.0	51
244	Insight into Microevolution of Yersinia pestis by Clustered Regularly Interspaced Short Palindromic Repeats. PLoS ONE, 2008, 3, e2652.	1.1	150
245	The Cyclic AMP Receptor Protein, CRP, Is Required for Both Virulence and Expression of the Minimal CRP Regulon in <i>Yersinia pestis</i> Biovar microtus. Infection and Immunity, 2008, 76, 5028-5037.	1.0	88
246	The Iron-Responsive Fur Regulon in <i>Yersinia pestis</i> . Journal of Bacteriology, 2008, 190, 3063-3075.	1.0	107
247	Physiological and Regulatory Characterization of KatA and KatY in <i>Yersinia pestis</i> . DNA and Cell Biology, 2008, 27, 453-462.	0.9	17
248	Different Region Analysis for Genotyping Yersinia pestis Isolates from China. PLoS ONE, 2008, 3, e2166.	1.1	65
249	Serologic Survey of the Sentinel Animals for Plague Surveillance and Screening for Complementary Diagnostic Markers to F1 Antigen by Protein Microarray. American Journal of Tropical Medicine and Hygiene, 2008, 79, 799-802.	0.6	12
250	Serologic survey of the sentinel animals for plague surveillance and screening for complementary diagnostic markers to F1 antigen by protein microarray. American Journal of Tropical Medicine and Hygiene, 2008, 79, 799-802.	0.6	7
251	Smad4 is required for maintaining normal murine postnatal bone homeostasis. Journal of Cell Science, 2007, 120, 2162-2170.	1.2	98
252	Differential gene expression profiles in the hippocampus of senescence-accelerated mouse. Neurobiology of Aging, 2007, 28, 497-506.	1.5	45

#	Article	IF	CITATIONS
253	Universal Sample Preparation Method for Characterization of Bacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Applied and Environmental Microbiology, 2007, 73, 1899-1907.	1.4	108
254	<i>Yersinia</i> genome diversity disclosed by <i>Yersinia pestis</i> genome-wide DNA microarray. Canadian Journal of Microbiology, 2007, 53, 1211-1221.	0.8	8
255	Analysis of the Three Yersinia pestis CRISPR Loci Provides New Tools for Phylogenetic Studies and Possibly for the Investigation of Ancient DNA. Advances in Experimental Medicine and Biology, 2007, 603, 327-338.	0.8	55
256	A Glimpse of Streptococcal Toxic Shock Syndrome from Comparative Genomics of S. suis 2 Chinese Isolates. PLoS ONE, 2007, 2, e315.	1.1	244
257	Th17 cell induction and immune regulatory effects. Journal of Cellular Physiology, 2007, 211, 273-278.	2.0	81
258	Sensitive detection of antibody against antigen F1 of Yersinia pestis by an antigen sandwich method using a portable fiber optic biosensor. Sensors and Actuators B: Chemical, 2007, 127, 525-530.	4.0	16
259	Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. BMC Microbiology, 2007, 7, 96.	1.3	31
260	Direct detection of Yersinia pestis from the infected animal specimens by a fiber optic biosensor. Sensors and Actuators B: Chemical, 2007, 123, 204-210.	4.0	18
261	Genotyping of hepatitis B virus (HBV) by oligonucleotides microarray. Molecular and Cellular Probes, 2006, 20, 121-127.	0.9	25
262	Global analysis of iron assimilation and fur regulation in Yersinia pestis. FEMS Microbiology Letters, 2006, 258, 9-17.	0.7	74
263	Microarray expression profiling ofYersinia pestisin response to chloramphenicol. FEMS Microbiology Letters, 2006, 263, 26-31.	0.7	19
264	Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensors and Actuators B: Chemical, 2006, 119, 656-663.	4.0	134
265	Quorum sensing affects virulence-associated proteins F1, LcrV, KatY and pH6 etc. of Yersinia pestis as revealed by protein microarray-based antibody profiling. Microbes and Infection, 2006, 8, 2501-2508.	1.0	15
266	Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes and Infection, 2006, 8, 2669-2678.	1.0	23
267	Global analysis of gene transcription regulation in prokaryotes. Cellular and Molecular Life Sciences, 2006, 63, 2260-2290.	2.4	49
268	Genomic comparison of Yersinia pestis and Yersinia pseudotuberculosis by combination of suppression subtractive hybridization and DNA microarray. Archives of Microbiology, 2006, 186, 151-159.	1.0	20
269	Molecular and physiological insights into plague transmission, virulence and etiology. Microbes and Infection, 2006, 8, 273-284.	1.0	65
270	DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes and Infection, 2005, 7, 335-348.	1.0	62

#	Article	IF	CITATIONS
271	Transcriptome analysis of the Mg2+-responsive PhoP regulator inYersinia pestis. FEMS Microbiology Letters, 2005, 250, 85-95.	0.7	61
272	Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes and Infection, 2005, 7, 882-889.	1.0	146
273	Global gene expression profile of Yersinia pestis induced by streptomycin. FEMS Microbiology Letters, 2005, 243, 489-496.	0.7	21
274	Asymptomatic <i>Yersinia pestis</i> Infection, China. Emerging Infectious Diseases, 2005, 11, 1494-1496.	2.0	13
275	Use of the COOH Portion of the Nucleocapsid Protein in an Antigen-Capturing Enzyme-Linked Immunosorbent Assay for Specific and Sensitive Detection of Severe Acute Respiratory Syndrome Coronavirus. Vaccine Journal, 2005, 12, 474-476.	3.2	10
276	Retrospective Serological Investigation of Severe Acute Respiratory Syndrome Coronavirus Antibodies in Recruits from Mainland China. Vaccine Journal, 2005, 12, 552-554.	3.2	10
277	Protein Microarray for Profiling Antibody Responses to Yersinia pestis Live Vaccine. Infection and Immunity, 2005, 73, 3734-3739.	1.0	88
278	Response of Memory CD8+ T Cells to Severe Acute Respiratory Syndrome (SARS) Coronavirus in Recovered SARS Patients and Healthy Individuals. Journal of Immunology, 2005, 175, 591-598.	0.4	80
279	Pseudogene accumulation might promote the adaptive microevolution of Yersinia pestis. Journal of Medical Microbiology, 2005, 54, 259-268.	0.7	35
280	Characterization and application of monoclonal antibodies against N protein of SARS-coronavirus. Biochemical and Biophysical Research Communications, 2005, 336, 110-117.	1.0	54
281	Synthetic peptides derived from SARS coronavirus S protein with diagnostic and therapeutic potential. FEBS Letters, 2005, 579, 2130-2136.	1.3	19
282	Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Research in Microbiology, 2005, 156, 403-415.	1.0	50
283	Identification of different regions among strains of Yersinia pestis by suppression subtractive hybridization. Research in Microbiology, 2005, 156, 785-789.	1.0	15
284	Genetic variations in the pgm locus among natural isolates of Yersinia pestis. Journal of General and Applied Microbiology, 2005, 51, 11-19.	0.4	11
285	Real-Time Polymerase Chain Reaction for Detecting SARS Coronavirus, Beijing, 2003. Emerging Infectious Diseases, 2004, 10, 311-316.	2.0	29
286	Bacterial mRNA Purification by Magnetic Captureâ€Hybridization Method. Microbiology and Immunology, 2004, 48, 91-96.	0.7	31
287	Microarray Analysis of Temperatureâ€Induced Transcriptome of <i>Yersinia pestis</i> . Microbiology and Immunology, 2004, 48, 791-805.	0.7	106
288	Identification of Signature Genes for Rapid and Specific Characterization of <i>Yersinia pestis</i> . Microbiology and Immunology, 2004, 48, 263-269.	0.7	28

#	Article	IF	CITATIONS
289	Complete Genome Sequence of Yersinia pestis Strain 91001, an Isolate Avirulent to Humans. DNA Research, 2004, 11, 179-197.	1.5	241
290	Genetics of Metabolic Variations between Yersinia pestis Biovars and the Proposal of a New Biovar, microtus. Journal of Bacteriology, 2004, 186, 5147-5152.	1.0	200
291	DNA Microarray Analysis of Genome Dynamics in Yersinia pestis: Insights into Bacterial Genome Microevolution and Niche Adaptation. Journal of Bacteriology, 2004, 186, 5138-5146.	1.0	109
292	Antigenicity Analysis of Different Regions of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein. Clinical Chemistry, 2004, 50, 988-995.	1.5	59
293	The spike protein of severe acute respiratory syndrome (SARS) is cleaved in virus infected Vero-E6 cells. Cell Research, 2004, 14, 400-406.	5.7	52
294	Identification and characterization of Bacillus anthracis by multiplex PCR on DNA chip. Biosensors and Bioelectronics, 2004, 20, 807-813.	5.3	25
295	Comparative and evolutionary genomics of. Microbes and Infection, 2004, 6, 1226-1234.	1.0	71
296	Defining the genome content of live plague vaccines by use of whole-genome DNA microarray. Vaccine, 2004, 22, 3367-3374.	1.7	20
297	Characterization of the 3a Protein of SARS-associated Coronavirus in Infected Vero E6 Cells and SARS Patients. Journal of Molecular Biology, 2004, 341, 271-279.	2.0	89
298	Identification of an HLA-A*0201–restricted CD8+ T-cell epitope SSp-1 of SARS-CoV spike protein. Blood, 2004, 104, 200-206.	0.6	90
299	A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Science Bulletin, 2003, 48, 941-948.	1.7	70
300	Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Research, 2003, 13, 141-145.	5.7	88
301	Assessment of Immunoreactive Synthetic Peptides from the Structural Proteins of Severe Acute Respiratory Syndrome Coronavirus. Clinical Chemistry, 2003, 49, 1989-1996.	1.5	71
302	A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Science Bulletin, 2003, 48, 941.	1.7	18
303	Identification ofStaphylococcusaureusand Determination of Its Methicillin Resistance by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2002, 74, 5487-5491.	3.2	182
304	DNA based biosensors. Biotechnology Advances, 1997, 15, 43-58.	6.0	161