Xiao-Qing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8721951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	6.0	1,623
2	Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6, 28-32.	15.6	1,423
3	Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354, 1410-1414.	6.0	1,262
4	Holey graphene frameworks for highly efficient capacitive energy storage. Nature Communications, 2014, 5, 4554.	5.8	1,161
5	Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nature Communications, 2017, 8, 14580.	5.8	648
6	Metallic nanostructures with low dimensionality for electrochemical water splitting. Chemical Society Reviews, 2020, 49, 3072-3106.	18.7	609
7	Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nature Communications, 2016, 7, 11850.	5.8	607
8	Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nature Materials, 2016, 15, 564-569.	13.3	548
9	Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2018, 57, 1888-1892.	7.2	536
10	Amine-Assisted Synthesis of Concave Polyhedral Platinum Nanocrystals Having {411} High-Index Facets. Journal of the American Chemical Society, 2011, 133, 4718-4721.	6.6	489
11	Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst. Journal of the American Chemical Society, 2019, 141, 10677-10683.	6.6	474
12	Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. Journal of the American Chemical Society, 2012, 134, 12326-12329.	6.6	451
13	Large‣cale, Bottomâ€Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie - International Edition, 2019, 58, 7051-7056.	7.2	386
14	Core–Shell Pd@Au Nanoplates as Theranostic Agents for Inâ€Vivo Photoacoustic Imaging, CT Imaging, and Photothermal Therapy. Advanced Materials, 2014, 26, 8210-8216.	11.1	383
15	Highly Active and Selective Hydrogenation of CO ₂ to Ethanol by Ordered Pd–Cu Nanoparticles. Journal of the American Chemical Society, 2017, 139, 6827-6830.	6.6	344
16	Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range. Nano Letters, 2016, 16, 4424-4430.	4.5	339
17	Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires. Science Advances, 2017, 3, e1601705.	4.7	330
18	General Formation of Monodisperse IrM (M = Ni, Co, Fe) Bimetallic Nanoclusters as Bifunctional Electrocatalysts for Acidic Overall Water Splitting. Advanced Functional Materials, 2017, 27, 1700886.	7.8	321

#	Article	IF	CITATIONS
19	Amorphization activated ruthenium-tellurium nanorods for efficient waterÂsplitting. Nature Communications, 2019, 10, 5692.	5.8	312
20	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 12859-12863.	7.2	311
21	Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature Communications, 2020, 11, 5437.	5.8	288
22	Recent Progress in Advanced Electrocatalyst Design for Acidic Oxygen Evolution Reaction. Advanced Materials, 2021, 33, e2004243.	11.1	284
23	A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts. Advanced Materials, 2015, 27, 7204-7212.	11.1	280
24	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie - International Edition, 2016, 55, 9030-9035.	7.2	278
25	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13983-13988.	7.2	274
26	Oxygen Vacancies in Amorphous InO _{<i>x</i>} Nanoribbons Enhance CO ₂ Adsorption and Activation for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 5609-5613.	7.2	273
27	One-Pot, High-Yield Synthesis of 5-Fold Twinned Pd Nanowires and Nanorods. Journal of the American Chemical Society, 2009, 131, 4602-4603.	6.6	259
28	Simplifying the Creation of Hollow Metallic Nanostructures: Oneâ€Pot Synthesis of Hollow Palladium/Platinum Singleâ€Crystalline Nanocubes. Angewandte Chemie - International Edition, 2009, 48, 4808-4812.	7.2	258
29	Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy, 2018, 45, 448-455.	8.2	257
30	Oxygenâ€Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Ureaâ€Assisted Energyâ€Saving Hydrogen Production in Alkaline Electrolyte. Advanced Functional Materials, 2021, 31, 2104951.	7.8	247
31	Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core‧hell Architecture. Advanced Materials, 2011, 23, 3420-3425.	11.1	240
32	Controlled Formation of Concave Tetrahedral/Trigonal Bipyramidal Palladium Nanocrystals. Journal of the American Chemical Society, 2009, 131, 13916-13917.	6.6	238
33	A Facile Strategy to Pt ₃ Ni Nanocrystals with Highly Porous Features as an Enhanced Oxygen Reduction Reaction Catalyst. Advanced Materials, 2013, 25, 2974-2979.	11.1	232
34	Synthesis of PtPd Bimetal Nanocrystals with Controllable Shape, Composition, and Their Tunable Catalytic Properties. Nano Letters, 2012, 12, 4265-4270.	4.5	227
35	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 4502-4506.	7.2	225
36	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	11.1	223

#	Article	IF	CITATIONS
37	Opportunities and Challenges of Interface Engineering in Bimetallic Nanostructure for Enhanced Electrocatalysis. Advanced Functional Materials, 2019, 29, 1806419.	7.8	223
38	Screw Thread-Like Platinum–Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis. Nano Letters, 2016, 16, 5037-5043.	4.5	221
39	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	18.7	211
40	One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Research, 2013, 6, 65-76.	5.8	202
41	An Assembly Route to Inorganic Catalytic Nanoreactors Containing Subâ€10â€nm Gold Nanoparticles with Antiâ€Aggregation Properties. Small, 2009, 5, 361-365.	5.2	192
42	Te-Doped Pd Nanocrystal for Electrochemical Urea Production by Efficiently Coupling Carbon Dioxide Reduction with Nitrite Reduction. Nano Letters, 2020, 20, 8282-8289.	4.5	188
43	PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 9576-9582.	6.6	185
44	Crystalline Control of {111} Bounded Pt ₃ Cu Nanocrystals: Multiply-Twinned Pt ₃ Cu Icosahedra with Enhanced Electrocatalytic Properties. ACS Nano, 2015, 9, 7634-7640.	7.3	178
45	Morphology and Phase Controlled Construction of Pt–Ni Nanostructures for Efficient Electrocatalysis. Nano Letters, 2016, 16, 2762-2767.	4.5	176
46	Biomimetic Synthesis of an Ultrathin Platinum Nanowire Network with a High Twin Density for Enhanced Electrocatalytic Activity and Durability. Angewandte Chemie - International Edition, 2013, 52, 12577-12581.	7.2	174
47	A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy and Environmental Science, 2014, 7, 2957-2962.	15.6	172
48	Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nature Communications, 2021, 12, 6261.	5.8	169
49	Double Perovskite LaFe _{<i>x</i>} Ni _{1â^{~,}<i>x</i>} O ₃ Nanorods Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 2316-2320.	7.2	166
50	Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO ₂ Nanowire Arrays by Nitrogen Implantation. Nano Letters, 2015, 15, 4692-4698.	4.5	159
51	Subnanometer PtRh Nanowire with Alleviated Poisoning Effect and Enhanced C–C Bond Cleavage for Ethanol Oxidation Electrocatalysis. ACS Catalysis, 2019, 9, 6607-6612.	5.5	159
52	Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nature Communications, 2022, 13, .	5.8	158
53	Plasmonic and Catalytic AuPd Nanowheels for the Efficient Conversion of Light into Chemical Energy. Angewandte Chemie - International Edition, 2013, 52, 6063-6067.	7.2	152
54	Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Advanced Materials, 2018, 30, e1803551.	11.1	150

#	Article	IF	CITATIONS
55	Palladiumâ€Based Nanostructures with Highly Porous Features and Perpendicular Pore Channels as Enhanced Organic Catalysts. Angewandte Chemie - International Edition, 2013, 52, 2520-2524.	7.2	147
56	Phase and structure engineering of copper tin heterostructures for efficient electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 4933.	5.8	141
57	Ruthenium-nickel sandwiched nanoplates for efficient water splitting electrocatalysis. Nano Energy, 2018, 47, 1-7.	8.2	137
58	Iridium metallene oxide for acidic oxygen evolution catalysis. Nature Communications, 2021, 12, 6007.	5.8	137
59	Etching Growth under Surface Confinement: An Effective Strategy To Prepare Mesocrystalline Pd Nanocorolla. Journal of the American Chemical Society, 2011, 133, 15946-15949.	6.6	136
60	Nanoscale Trimetallic Metal–Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2018, 130, 1906-1910.	1.6	134
61	Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 2021, 12, 6022.	5.8	132
62	Crystalâ€₽haseâ€Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angewandte Chemie - International Edition, 2020, 59, 2649-2653.	7.2	131
63	MoS ₂ Nanosheet Assembling Superstructure with a Three-Dimensional Ion Accessible Site: A New Class of Bifunctional Materials for Batteries and Electrocatalysis. Chemistry of Materials, 2016, 28, 2074-2080.	3.2	130
64	Partially Pyrolyzed Binary Metal–Organic Framework Nanosheets for Efficient Electrochemical Hydrogen Peroxide Synthesis. Angewandte Chemie - International Edition, 2020, 59, 14373-14377.	7.2	127
65	Enhancing Oxygen Evolution Electrocatalysis <i>via</i> the Intimate Hydroxide–Oxide Interface. ACS Nano, 2018, 12, 6245-6251.	7.3	123
66	Site-Specified Two-Dimensional Heterojunction of Pt Nanoparticles/Metal–Organic Frameworks for Enhanced Hydrogen Evolution. Journal of the American Chemical Society, 2021, 143, 16512-16518.	6.6	121
67	Superior overall water splitting electrocatalysis in acidic conditions enabled by bimetallic Ir-Ag nanotubes. Nano Energy, 2019, 56, 330-337.	8.2	120
68	Synthesis of Stable Shape-Controlled Catalytically Active β-Palladium Hydride. Journal of the American Chemical Society, 2015, 137, 15672-15675.	6.6	117
69	Multicomponent Pt-Based Zigzag Nanowires as Selectivity Controllers for Selective Hydrogenation Reactions. Journal of the American Chemical Society, 2018, 140, 8384-8387.	6.6	117
70	Single-site Pt-doped RuO ₂ hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Science Advances, 2022, 8, eabl9271.	4.7	117
71	Adsorbing and Activating N ₂ on Heterogeneous Au–Fe ₃ O ₄ Nanoparticles for N ₂ Fixation. Advanced Functional Materials, 2020, 30, 1906579.	7.8	114
72	Transition metal-doped ultrathin RuO ₂ networked nanowires for efficient overall water splitting across a broad pH range. Journal of Materials Chemistry A, 2019, 7, 6411-6416.	5.2	111

#	Article	IF	CITATIONS
73	A General Strategy to Glassy Mâ€Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N ₂ Fixation. Advanced Materials, 2020, 32, e1907112.	11.1	111
74	Fe-Doped BiOCl Nanosheets with Light-Switchable Oxygen Vacancies for Photocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2019, 2, 8394-8398.	2.5	109
75	Fully Tensile Strained Pd ₃ Pb/Pd Tetragonal Nanosheets Enhance Oxygen Reduction Catalysis. Nano Letters, 2019, 19, 1336-1342.	4.5	109
76	High Density Catalytic Hot Spots in Ultrafine Wavy Nanowires. Nano Letters, 2014, 14, 3887-3894.	4.5	107
77	Superior Bifunctional Liquid Fuel Oxidation and Oxygen Reduction Electrocatalysis Enabled by PtNiPd Core–Shell Nanowires. Advanced Materials, 2017, 29, 1603774.	11.1	106
78	Three-Dimensional Pd ₃ Pb Nanosheet Assemblies: High-Performance Non-Pt Electrocatalysts for Bifunctional Fuel Cell Reactions. ACS Catalysis, 2018, 8, 4569-4575.	5.5	106
79	A Generalized Surface Chalcogenation Strategy for Boosting the Electrochemical N ₂ Fixation of Metal Nanocrystals. Advanced Materials, 2020, 32, e2001267.	11.1	105
80	Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy. Journal of Materials Chemistry, 2011, 21, 11244.	6.7	101
81	Structurally Ordered Pt ₃ Sn Nanofibers with Highlighted Antipoisoning Property as Efficient Ethanol Oxidation Electrocatalysts. ACS Catalysis, 2020, 10, 3455-3461.	5.5	101
82	Multiâ€ s ite Electrocatalysts Boost pHâ€Universal Nitrogen Reduction by Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2006939.	7.8	99
83	3D Platinum–Lead Nanowire Networks as Highly Efficient Ethylene Glycol Oxidation Electrocatalysts. Small, 2016, 12, 4464-4470.	5.2	98
84	Largeâ€Scale, Bottomâ€Up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angewandte Chemie, 2019, 131, 7125-7130.	1.6	98
85	pH-Universal Water Splitting Catalyst: Ru-Ni Nanosheet Assemblies. IScience, 2019, 11, 492-504.	1.9	97
86	Platinum Porous Nanosheets with High Surface Distortion and Pt Utilization for Enhanced Oxygen Reduction Catalysis. Advanced Functional Materials, 2019, 29, 1904429.	7.8	96
87	Selective Ethanol Oxidation Reaction at the Rh–SnO ₂ Interface. Advanced Materials, 2021, 33, e2005767.	11.1	96
88	A general approach to synthesise ultrathin NiM (M = Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7769-7775.	5.2	94
89	Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Science Advances, 2018, 4, eaap8817.	4.7	94
90	Crystalâ€Phaseâ€Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angewandte Chemie, 2020, 132, 2671-2675.	1.6	93

#	Article	IF	CITATIONS
91	Cation Exchange Strategy to Single-Atom Noble-Metal Doped CuO Nanowire Arrays with Ultralow Overpotential for H ₂ O Splitting. Nano Letters, 2020, 20, 5482-5489.	4.5	93
92	Solvent-Mediated Shape Tuning of Well-Defined Rhodium Nanocrystals for Efficient Electrochemical Water Splitting. Chemistry of Materials, 2017, 29, 5009-5015.	3.2	91
93	Trimetallic PtSnRh Wavy Nanowires as Efficient Nanoelectrocatalysts for Alcohol Electrooxidation. ACS Applied Materials & Interfaces, 2015, 7, 15061-15067.	4.0	90
94	An Efficient Interfacial Synthesis of Twoâ€Ðimensional Metal–Organic Framework Nanosheets for Electrochemical Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2021, 60, 11190-11195.	7.2	89
95	Hierarchical Pt/Pt _{<i>x</i>} Pb Core/Shell Nanowires as Efficient Catalysts for Electrooxidation of Liquid Fuels. Chemistry of Materials, 2016, 28, 4447-4452.	3.2	88
96	Study of CeO ₂ and Its Native Defects by Density Functional Theory with Repulsive Potential. Journal of Physical Chemistry C, 2014, 118, 24248-24256.	1.5	86
97	Selective Surface Reconstruction of a Defective Iridiumâ€Based Catalyst for Highâ€Efficiency Water Splitting. Advanced Functional Materials, 2020, 30, 2004375.	7.8	85
98	Low Dimensional Platinum-Based Bimetallic Nanostructures for Advanced Catalysis. Accounts of Chemical Research, 2019, 52, 3384-3396.	7.6	84
99	Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. ACS Nano, 2020, 14, 11570-11578.	7.3	84
100	Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets. Nano Letters, 2015, 15, 7519-7525.	4.5	82
101	Barrier-free Interface Electron Transfer on PtFe-Fe2C Janus-like Nanoparticles Boosts Oxygen Catalysis. CheM, 2018, 4, 1153-1166.	5.8	82
102	Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy, 2019, 59, 138-145.	8.2	81
103	Phase and Composition Tuning of 1D Platinumâ€Nickel Nanostructures for Highly Efficient Electrocatalysis. Advanced Functional Materials, 2017, 27, 1700830.	7.8	80
104	Hollow Pd–Sn Nanocrystals for Efficient Direct H ₂ O ₂ Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance. ACS Catalysis, 2018, 8, 3418-3423.	5.5	80
105	Defect Engineering of Palladium–Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions. Nano Letters, 2019, 19, 6894-6903.	4.5	79
106	Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Science Advances, 2020, 6, eaba9731.	4.7	78
107	Singleâ€Atom Inâ€Doped Subnanometer Pt Nanowires for Simultaneous Hydrogen Generation and Biomass Upgrading. Advanced Functional Materials, 2020, 30, 2004310.	7.8	77
108	Highly Efficient Acidic Oxygen Evolution Electrocatalysis Enabled by Porous Ir–Cu Nanocrystals with Three-Dimensional Electrocatalytic Surfaces. Chemistry of Materials, 2018, 30, 8571-8578.	3.2	75

#	Article	IF	CITATIONS
109	Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis. ACS Nano, 2018, 12, 7371-7379.	7.3	75
110	The Design of Water Oxidation Electrocatalysts from Nanoscale Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15143-15155.	1.7	74
111	Amorphous Oxide Nanostructures for Advanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, 3943-3960.	1.7	74
112	Phase and Interface Engineering of Platinum–Nickel Nanowires for Efficient Electrochemical Hydrogen Evolution. Angewandte Chemie, 2016, 128, 13051-13055.	1.6	73
113	Compensating Electronic Effect Enables Fast Siteâ€toâ€6ite Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting. Advanced Materials, 2021, 33, e2105308.	11.1	73
114	A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pHâ€Universal Conditions. Advanced Functional Materials, 2018, 28, 1803722.	7.8	71
115	P,Seâ€Codoped MoS ₂ Nanosheets as Accelerated Electrocatalysts for Hydrogen Evolution. ChemCatChem, 2019, 11, 689-692.	1.8	71
116	Closest Packing Polymorphism Interfaced Metastable Transition Metal for Efficient Hydrogen Evolution. Advanced Materials, 2020, 32, e2002857.	11.1	71
117	Trimetallic Oxyhydroxide Coralloids for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2017, 129, 4573-4577.	1.6	68
118	Grain-Boundary-Engineered La ₂ CuO ₄ Perovskite Nanobamboos for Efficient CO ₂ Reduction Reaction. Nano Letters, 2021, 21, 980-987.	4.5	68
119	Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Research, 2016, 9, 2811-2821.	5.8	67
120	Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction. Journal of Materials Chemistry A, 2020, 8, 2323-2330.	5.2	67
121	Spin Regulation on 2D Pd–Fe–Pt Nanomeshes Promotes Fuel Electrooxidations. Nano Letters, 2020, 20, 1967-1973.	4.5	67
122	A Strongly Coupled Ultrasmall Pt ₃ Co Nanoparticle-Ultrathin Co(OH) ₂ Nanosheet Architecture Enhances Selective Hydrogenation of α,β-Unsaturated Aldehydes. ACS Catalysis, 2019, 9, 154-159.	5.5	66
123	Exploring Bi ₂ Te ₃ Nanoplates as Versatile Catalysts for Electrochemical Reduction of Small Molecules. Advanced Materials, 2020, 32, e1906477.	11.1	65
124	Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15, 310-316.	5.8	65
125	In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. Nano Research, 2016, 9, 149-157.	5.8	64
126	Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO ₂ Reduction to C ₂₊ Liquids. ACS Nano, 2021, 15, 1039-1047.	7.3	64

#	Article	IF	CITATIONS
127	A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution. Nature Communications, 2022, 13, 1187.	5.8	63
128	Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	62
129	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	5.8	59
130	Trimetallic Molybdate Nanobelts as Active and Stable Electrocatalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2019, 9, 1013-1018.	5.5	59
131	Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 14449.	5.2	58
132	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie, 2019, 131, 14121-14126.	1.6	58
133	Highâ€Index Faceted RuCo Nanoscrews for Water Electrosplitting. Advanced Energy Materials, 2020, 10, 2002860.	10.2	58
134	Surfaceâ€Regulated Rhodium–Antimony Nanorods for Nitrogen Fixation. Angewandte Chemie - International Edition, 2020, 59, 8066-8071.	7.2	58
135	Ordered PdCuâ€Based Nanoparticles as Bifunctional Oxygenâ€Reduction and Ethanolâ€Oxidation Electrocatalysts. Angewandte Chemie, 2016, 128, 9176-9181.	1.6	56
136	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	4.6	56
137	Porous Ptâ€Ni Nanowires within In Situ Generated Metalâ€Organic Frameworks for Highly Chemoselective Cinnamaldehyde Hydrogenation. Small, 2018, 14, e1704318.	5.2	55
138	Stabilizing and Activating Metastable Nickel Nanocrystals for Highly Efficient Hydrogen Evolution Electrocatalysis. ACS Nano, 2018, 12, 11625-11631.	7.3	55
139	The Advanced Designs of Highâ€Performance Platinumâ€Based Electrocatalysts: Recent Progresses and Challenges. Advanced Materials Interfaces, 2018, 5, 1800486.	1.9	55
140	Simplifying the Creation of Dumbbellâ€Like Cuâ€Ag Nanostructures and Their Enhanced Catalytic Activity. Chemistry - A European Journal, 2012, 18, 9505-9510.	1.7	54
141	Platinum Group Nanowires for Efficient Electrocatalysis. Small Methods, 2019, 3, 1800545.	4.6	53
142	On-Demand, Ultraselective Hydrogenation System Enabled by Precisely Modulated Pd–Cd Nanocubes. Journal of the American Chemical Society, 2020, 142, 962-972.	6.6	53
143	High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy and Environmental Science, 2021, 14, 3194-3202.	15.6	53
144	Networked Pt–Sn nanowires as efficient catalysts for alcohol electrooxidation. Journal of Materials Chemistry A, 2017, 5, 24626-24630.	5.2	52

#	Article	IF	CITATIONS
145	Exceptionally active and stable RuO2 with interstitial carbon for water oxidation in acid. CheM, 2022, 8, 1673-1687.	5.8	52
146	4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. Journal of Computational Chemistry, 2016, 37, 825-835.	1.5	49
147	Atomically Isolated Rh Sites within Highly Branched Rh ₂ Sb Nanostructures Enhance Bifunctional Hydrogen Electrocatalysis. Advanced Materials, 2021, 33, e2105049.	11.1	48
148	Native Point Defects in CaS: Focus on Intrinsic Defects and Rare Earth Ion Dopant Levels for Up-converted Persistent Luminescence. Inorganic Chemistry, 2015, 54, 11423-11440.	1.9	47
149	Activating and Converting CH ₄ to CH ₃ OH via the CuPdO ₂ /CuO Nanointerface. ACS Catalysis, 2019, 9, 6938-6944.	5.5	47
150	Phase-Controlled Synthesis of Pd–Se Nanocrystals for Phase-Dependent Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 3805-3812.	4.5	46
151	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Scientific Reports, 2013, 3, .	1.6	45
152	Strong synergy in a lichen-like RuCu nanosheet boosts the direct methane oxidation to methanol. Nano Energy, 2020, 71, 104566.	8.2	45
153	Efficient Direct H ₂ O ₂ Synthesis Enabled by PdPb Nanorings via Inhibiting the O–O Bond Cleavage in O ₂ and H ₂ O ₂ . ACS Catalysis, 2021, 11, 1106-1118.	5.5	45
154	Hydroxideâ€Membraneâ€Coated Pt ₃ Ni Nanowires as Highly Efficient Catalysts for Selective Hydrogenation Reaction. Advanced Functional Materials, 2018, 28, 1705918.	7.8	43
155	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	3.5	43
156	A Large-Scalable, Surfactant-Free, and Ultrastable Ru-Doped Pt ₃ Co Oxygen Reduction Catalyst. Nano Letters, 2021, 21, 6625-6632.	4.5	43
157	Double Perovskite LaFe _{<i>x</i>} Ni _{1â^'<i>x</i>} O ₃ Nanorods Enable Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 2338-2342.	1.6	42
158	Ultrathin perovskite derived Ir-based nanosheets for high-performance electrocatalytic water splitting. Energy and Environmental Science, 2022, 15, 1672-1681.	15.6	41
159	The screened pseudo-charge repulsive potential in perturbed orbitals for band calculations by DFT+U. Physical Chemistry Chemical Physics, 2017, 19, 8008-8025.	1.3	40
160	Superior Electrochemical Oxygen Evolution Enabled by Threeâ€Dimensional Layered Double Hydroxide Nanosheet Superstructures. ChemCatChem, 2017, 9, 84-88.	1.8	40
161	A hierarchically-assembled Fe–MoS ₂ /Ni ₃ S ₂ /nickel foam electrocatalyst for efficient water splitting. Dalton Transactions, 2019, 48, 12186-12192.	1.6	40
162	The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Applied Catalysis B: Environmental, 2022, 312, 121431.	10.8	40

#	Article	IF	CITATIONS
163	Oxygen Vacancies in Amorphous InO _{<i>x</i>} Nanoribbons Enhance CO ₂ Adsorption and Activation for CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 5665-5669.	1.6	39
164	Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. National Science Review, 2021, 8, nwaa088.	4.6	39
165	Advanced Catalysts Derived from Composition‧egregated Platinum–Nickel Nanostructures: New Opportunities and Challenges. Advanced Functional Materials, 2019, 29, 1808161.	7.8	38
166	Promoting Alkaline Hydrogen Evolution Catalysis on P-Decorated, Ni-Segregated Pt–Ni–P Nanowires via a Synergetic Cascade Route. Chemistry of Materials, 2020, 32, 3144-3149.	3.2	38
167	Strain modulation of phase transformation of noble metal nanomaterials. InformaÄnÃ-Materiály, 2020, 2, 715-734.	8.5	38
168	Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coordination Chemistry Reviews, 2022, 459, 214388.	9.5	38
169	Highly Active, Selective, and Stable Direct H ₂ O ₂ Generation by Monodispersive Pd–Ag Nanoalloy. ACS Applied Materials & Interfaces, 2018, 10, 21291-21296.	4.0	37
170	A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale, 2013, 5, 6284.	2.8	36
171	Ternary PtNi/Pt _x Pb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. Journal of Materials Chemistry A, 2017, 5, 18977-18983.	5.2	36
172	Universal Strategy for Ultrathin Pt–M (M = Fe, Co, Ni) Nanowires for Efficient Catalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2018, 10, 22257-22263.	4.0	36
173	Ultrathin Veinâ€Like Iridium–Tin Nanowires with Abundant Oxidized Tin as Highâ€Performance Ethanol Oxidation Electrocatalysts. Small, 2017, 13, 1701295.	5.2	35
174	All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction. Nano Energy, 2019, 62, 861-868.	8.2	34
175	Defectâ€Rich Metal Nanocrystals in Catalysis. ChemCatChem, 2016, 8, 480-485.	1.8	33
176	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2022, 61, e202114539.	7.2	33
177	Rhombohedral Pd–Sb Nanoplates with Pdâ€Terminated Surface: An Efficient Bifunctional Fuel ell Catalyst. Advanced Materials, 2022, 34, .	11.1	33
178	Concavity Tuning of Intermetallic Pd–Pb Nanocubes for Selective Semihydrogenation Catalysis. Chemistry of Materials, 2018, 30, 6338-6345.	3.2	31
179	Highly Surface-Distorted Pt Superstructures for Multifunctional Electrocatalysis. Nano Letters, 2021, 21, 5075-5082.	4.5	31
180	Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. Journal of Materials Chemistry A, 2019, 7, 20478-20493.	5.2	30

#	Article	IF	CITATIONS
181	Boosting hydrogen production with ultralow working voltage by selenium vacancyâ€enhanced ultrafine platinum–nickel nanowires. SmartMat, 2022, 3, 130-141.	6.4	30
182	Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 13564-13582.	1.3	29
183	Intrinsic energy conversions for photon-generation in piezo-phototronic materials: A case study on alkaline niobates. Nano Energy, 2018, 47, 150-171.	8.2	29
184	N-Doped carbon shelled bimetallic phosphates for efficient electrochemical overall water splitting. Nanoscale, 2018, 10, 22787-22791.	2.8	29
185	Twoâ€Dimensional Metal–Organic Frameworksâ€Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000067.	2.8	29
186	Ordered PtPb/Pt Core/Shell Nanodisks as Highly Active, Selective, and Stable Catalysts for Methanol Reformation to H ₂ . Advanced Energy Materials, 2018, 8, 1703430.	10.2	27
187	Promoting the Direct H ₂ O ₂ Generation Catalysis by Using Hollow Pd–Sn Intermetallic Nanoparticles. Small, 2018, 14, e1703990.	5.2	27
188	Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline. Nano Energy, 2020, 78, 105224.	8.2	27
189	Boron-doped amorphous iridium oxide with ultrahigh mass activity for acidic oxygen evolution reaction. Science China Materials, 2021, 64, 2958-2966.	3.5	25
190	One-dimensional iridium-based nanowires for efficient water electrooxidation and beyond. Nano Research, 2022, 15, 1087-1093.	5.8	25
191	Se-Incorporation Stabilizes and Activates Metastable MoS ₂ for Efficient and Cost-Effective Water Gas Shift Reaction. ACS Nano, 2019, 13, 11303-11309.	7.3	24
192	Hexagonal PtBi Intermetallic Inlaid with Subâ€Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. Small, 2022, 18, e2107803.	5.2	24
193	Coâ€Modified MoS ₂ Hybrids as Superior Bifunctional Electrocatalysts for Water Splitting Reactions: Integrating Multiple Active Components in One. Advanced Materials Interfaces, 2019, 6, 1900372.	1.9	22
194	Interface Confinement in Metal Nanosheet for High-Efficiency Semi-Hydrogenation of Alkynes. ACS Catalysis, 2021, 11, 5231-5239.	5.5	22
195	Phase Modulating of Cu–Ni Nanowires Enables Active and Stable Electrocatalysts for the Methanol Oxidation Reaction. Chemistry - A European Journal, 2019, 25, 7218-7224.	1.7	21
196	Highly Active and Selective Electrocatalytic CO ₂ Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Applied Materials & Interfaces, 2019, 11, 39722-39727.	4.0	20
197	Rational design of ordered Pd–Pb nanocubes as highly active, selective and durable catalysts for solvent-free benzyl alcohol oxidation. Nanoscale, 2019, 11, 5145-5150.	2.8	20
198	Face-centered cubic structured RuCu hollow urchin-like nanospheres enable remarkable hydrogen evolution catalysis. Science China Chemistry, 2022, 65, 87-95.	4.2	20

#	Article	IF	CITATIONS
199	Highly Networked Platinum–Tin Nanowires as Highly Active and Selective Catalysts towards the Semihydrogenation of Unsaturated Aldehydes. ChemCatChem, 2018, 10, 3214-3218.	1.8	19
200	Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Research, 2022, 15, 1861-1867.	5.8	18
201	Partially Pyrolyzed Binary Metal–Organic Framework Nanosheets for Efficient Electrochemical Hydrogen Peroxide Synthesis. Angewandte Chemie, 2020, 132, 14479-14483.	1.6	17
202	Advanced water splitting electrocatalysts <i>via</i> the design of multicomponent heterostructures. Dalton Transactions, 2020, 49, 2761-2765.	1.6	17
203	Facile Synthesis of Ultrathin Bimetallic PtSn Wavy Nanowires by Nanoparticle Attachment as Enhanced Hydrogenation Catalysts. Chemistry - A European Journal, 2015, 21, 3901-3905.	1.7	16
204	Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Science China Materials, 2019, 62, 341-350.	3.5	16
205	Electronic Coupling of Single Atom and FePS ₃ Boosts Water Electrolysis. Energy and Environmental Materials, 2022, 5, 899-905.	7.3	16
206	An Onâ€Đemand, Selective Hydrogenation Catalysis over Ptâ^'Fe Nanocatalysts under Ambient Condition. ChemCatChem, 2019, 11, 2265-2269.	1.8	15
207	Compressive Strain in Nâ€Đoped Palladium/Amorphousâ€Cobalt (II) Interface Facilitates Alkaline Hydrogen Evolution. Small, 2021, 17, e2103798.	5.2	15
208	Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catalysis, 2021, 1, 1104-1117.	2.9	14
209	Transition Metalâ€Doped Edgeâ€īerminated MoS ₂ Superstructures as Efficient Catalysts for H ₂ Production. Advanced Materials Interfaces, 2018, 5, 1801370.	1.9	13
210	Efficient catalytic hydrogen generation by intermetallic platinum-lead nanostructures with highly tunable porous feature. Science Bulletin, 2019, 64, 36-43.	4.3	13
211	A Topâ€Down Strategy to Realize Surface Reconstruction of Smallâ€6ized Platinumâ€Based Nanoparticles for Selective Hydrogenation. Angewandte Chemie - International Edition, 2021, 60, 17430-17434.	7.2	13
212	Catalytic Hydrogen Production by Janus CuAg Nanostructures. ChemNanoMat, 2018, 4, 477-481.	1.5	12
213	The exclusive surface and electronic effects of Ni on promoting the activity of Pt towards alkaline hydrogen oxidation. Nano Research, 2022, 15, 5865-5872.	5.8	12
214	A wide range of CO : H ₂ syngas ratios enabled by a tellurization-induced amorphous telluride–palladium surface. Journal of Materials Chemistry A, 2021, 9, 18349-18355.	5.2	11
215	Supramolecular Anchoring Strategy for Facile Production of Ruthenium Nanoparticles Embedded in N-Doped Mesoporous Carbon Nanospheres for Efficient Hydrogen Generation. ACS Applied Materials & amp; Interfaces, 2021, 13, 32997-33005.	4.0	11
216	Defect engineered 2D mesoporous Mo-Co-O nanosheets with crystalline-amorphous composite structure for efficient oxygen evolution. Science China Materials, 2022, 65, 3470-3478.	3.5	11

#	Article	IF	CITATIONS
217	Surfaceâ€Regulated Rhodium–Antimony Nanorods for Nitrogen Fixation. Angewandte Chemie, 2020, 132, 8143-8148.	1.6	10
218	S incorporated RuO2-based nanorings for active and stable water oxidation in acid. Nano Research, 2022, 15, 3964-3970.	5.8	10
219	CO spillover on ultrathin bimetallic Rh/Rh-M nanosheets. Chem Catalysis, 2022, 2, 1709-1719.	2.9	8
220	Decoding of crystal synthesis of fcc-hcp reversible transition for metals: theoretical mechanistic study from facet control to phase transition engineering. Nano Energy, 2021, 85, 106026.	8.2	7
221	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie, 2022, 134, .	1.6	6
222	Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angewandte Chemie, 0, , .	1.6	5
223	Two-dimensional PtPb-PbS heterostructure enables improved kinetics and highlighted bifunctional antipoisoning for methanol electrooxidation. Science China Chemistry, 2022, 65, 1112-1121.	4.2	5
224	A top-down strategy to realize the synthesis of small-sized L10-platinum-based intermetallic compounds for selective hydrogenation. Nano Research, 2022, 15, 9631-9638.	5.8	5
225	Editorial for special issue on metal-based materials for energy catalysis. Rare Metals, 2020, 39, 748-750.	3.6	4
226	Graphene Hydrogels: Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors (Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5828-5828.	11.1	3
227	Partially Oxidized Bimetallic Nanocrystals as Efficient Nonâ€Noble Metal Alcohol Electrooxidation Catalysts. ChemCatChem, 2018, 10, 3647-3652.	1.8	3
228	Enhancing catalytic H2 generation by surface electronic tuning of systematically controlled Pt-Pb nanocrystals. Nano Research, 2019, 12, 2335-2340.	5.8	3
229	New framework of integrated electrocatalysis systems for nitrogen fixation. Journal of Materials Chemistry A, 2022, 10, 19506-19517.	5.2	3
230	An Efficient Interfacial Synthesis of Twoâ€Dimensional Metal–Organic Framework Nanosheets for Electrochemical Hydrogen Peroxide Production. Angewandte Chemie, 2021, 133, 11290-11295.	1.6	2
231	A Topâ€Down Strategy to Realize Surface Reconstruction of Smallâ€6ized Platinumâ€Based Nanoparticles for Selective Hydrogenation. Angewandte Chemie, 2021, 133, 17570-17574.	1.6	2
232	Frontispiece: The Design of Water Oxidation Electrocatalysts from Nanoscale Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, .	1.7	0
233	Water Splitting: Highâ€Index Faceted RuCo Nanoscrews for Water Electrosplitting (Adv. Energy Mater.) Tj ETQq1	10.7843 10.2	14 rgBT /Ov
234	Frontispiece: Amorphous Oxide Nanostructures for Advanced Electrocatalysis. Chemistry - A European Journal, 2020, 26, .	1.7	0