List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8721880/publications.pdf Version: 2024-02-01

Μιτιλ Ι ιιΔιτρεκ

#	Article	IF	CITATIONS
1	Sources of Occupational Stress among Office Workers—A Focus Group Study. International Journal of Environmental Research and Public Health, 2022, 19, 1075.	1.2	8
2	What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges. Sensors, 2022, 22, 3613.	2.1	3
3	Learning comprehensible and accurate hybrid trees. Expert Systems With Applications, 2021, 164, 113980.	4.4	4
4	A General Framework for Making Context-Recognition Systems More Energy Efficient. Sensors, 2021, 21, 766.	2.1	2
5	A Personal Health System for Self-Management of Congestive Heart Failure (HeartMan): Development, Technical Evaluation, and Proof-of-Concept Randomized Controlled Trial. JMIR Medical Informatics, 2021, 9, e24501.	1.3	19
6	Classification of Hemodynamics Scenarios from a Public Radar Dataset Using a Deep Learning Approach. Sensors, 2021, 21, 1836.	2.1	3
7	Smartwatch-Based Eating Detection: Data Selection for Machine Learning from Imbalanced Data with Imperfect Labels. Sensors, 2021, 21, 1902.	2.1	13
8	Proof-of-concept trial results of the HeartMan mobile personal health system for self-management in congestive heart failure. Scientific Reports, 2021, 11, 5663.	1.6	13
9	Cardiovascular RNA markers and artificial intelligence may improve COVID-19 outcome: a position paper from the EU-CardioRNA COST Action CA17129. Cardiovascular Research, 2021, 117, 1823-1840.	1.8	17
10	Machine Learning Prediction Models for Chronic Kidney Disease Using National Health Insurance Claim Data in Taiwan. Healthcare (Switzerland), 2021, 9, 546.	1.0	47
11	Machine Learning for Analyzing Non-Countermeasure Factors Affecting Early Spread of COVID-19. International Journal of Environmental Research and Public Health, 2021, 18, 6750.	1.2	2
12	Participants' Experience and Adherence in Repeated Measurement Studies Among Office-Based Workers. , 2021, , .		4
13	HeartMan DSS: A decision support system for self-management of congestive heart failure. Expert Systems With Applications, 2021, 186, 115688.	4.4	9
14	Cognitive Load Monitoring With Wearables–Lessons Learned From a Machine Learning Challenge. IEEE Access, 2021, 9, 103325-103336.	2.6	16
15	A Survey on Energy Expenditure Estimation Using Wearable Devices. ACM Computing Surveys, 2021, 53, 1-35.	16.1	182
16	Protocol of the STRess at Work (STRAW) Project: How to Disentangle Day-to-Day Occupational Stress among Academics Based on EMA, Physiological Data, and Smartphone Sensor and Usage Data. International Journal of Environmental Research and Public Health, 2020, 17, 8835.	1.2	16
17	Optimising an FFQ Using a Machine Learning Pipeline to Teach an Efficient Nutrient Intake Predictive Model. Nutrients, 2020, 12, 3789.	1.7	7
18	Toward Cognitive Load Inference for Attention Management in Ubiquitous Systems. IEEE Pervasive Computing, 2020, 19, 35-45.	1.1	4

4

#	Article	IF	CITATIONS
19	Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors. Information Fusion, 2020, 62, 47-62.	11.7	62
20	Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients. PLoS ONE, 2020, 15, e0233976.	1.1	35
21	Datasets for Cognitive Load Inference Using Wearable Sensors and Psychological Traits. Applied Sciences (Switzerland), 2020, 10, 3843.	1.3	42
22	Association of patient-reported outcomes and heart rate trends in heart failure: a report from the Chiron project. Scientific Reports, 2020, 10, 576.	1.6	2
23	Machine Learning and End-to-End Deep Learning for Monitoring Driver Distractions From Physiological and Visual Signals. IEEE Access, 2020, 8, 70590-70603.	2.6	47
24	On Applying Ambient Intelligence to Assist People with Profound Intellectual and Multiple Disabilities. Advances in Intelligent Systems and Computing, 2020, , 895-914.	0.5	2
25	CrowdHEALTH: An e-Health Big Data Driven Platform towards Public Health Policies. , 2020, , .		1
26	Wearable Sensors Data-Fusion and Machine-Learning Method for Fall Detection and Activity Recognition. Studies in Systems, Decision and Control, 2020, , 81-96.	0.8	9
27	Constrained Multiobjective Optimization for the Design of Energy-Efficient Context Recognition Systems. Lecture Notes in Computer Science, 2020, , 308-320.	1.0	0
28	Tackling the SHL challenge 2020 with person-specific classifiers and semi-supervised learning. , 2020, , .		10
29	Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors, 2019, 19, 3420.	2.1	200
30	Cross-dataset deep transfer learning for activity recognition. , 2019, , .		11
31	Catalyzing Transcriptomics Research in Cardiovascular Disease: The CardioRNA COST Action CA17129. Non-coding RNA, 2019, 5, 31.	1.3	14
32	Cost-Sensitive Trees for Energy-Efficient Context Recognition. , 2019, , .		0
33	Contact-Free Monitoring of Physiological Parameters in People With Profound Intellectual and Multiple Disabilities. , 2019, , .		7
34	Authentication of key aroma compounds in apple using stable isotope approach. Food Chemistry, 2019, 277, 766-773.	4.2	16
35	Cross-location transfer learning for the sussex-huawei locomotion recognition challenge. , 2019, , .		14

36 Mobile nutrition monitoring for well-being. , 2019, , .

#	Article	lF	CITATIONS
37	Winning the Sussex-Huawei Locomotion-Transportation Recognition Challenge. Springer Series in Adaptive Environments, 2019, , 233-250.	0.3	2
38	Enhancing BMI-Based Student Clustering by Considering Fitness as Key Attribute. Lecture Notes in Computer Science, 2019, , 155-165.	1.0	1
39	The CrowdHEALTH project and the Hollistic Health Records: Collective Wisdom Driving Public Health Policies. Acta Informatica Medica, 2019, 27, 369.	0.5	16
40	Interoperability Techniques in CrowdHEALTH project: The Terminology Service. Acta Informatica Medica, 2019, 27, 355.	0.5	5
41	CrowdHEALTH: Big Data Analytics and Holistic Health Records. Studies in Health Technology and Informatics, 2019, 258, 255-256.	0.2	4
42	Circular RNAs in the cardiovascular system. Non-coding RNA Research, 2018, 3, 1-11.	2.4	36
43	Real-time activity monitoring with a wristband and a smartphone. Information Fusion, 2018, 43, 77-93.	11.7	59
44	My Watch Says I'm Busy. , 2018, , .		13
45	Applying Multiple Knowledge to Sussex-Huawei Locomotion Challenge. , 2018, , .		14
46	A New Frontier for Activity Recognition. , 2018, , .		21
47	Choosing Duty-Cycle Parameters for Context Recognition. , 2018, , .		1
48	Multi-Task Ensemble Learning for Affect Recognition. , 2018, , .		1
49	Blood Pressure Estimation with a Wristband Optical Sensor. , 2018, , .		3
50	A Personal Decision Support System for Heart Failure Management (HeartMan): study protocol of the HeartMan randomized controlled trial. BMC Cardiovascular Disorders, 2018, 18, 186.	0.7	19
51	Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition. Sensors, 2018, 18, 80.	2.1	5
52	Mining telemonitored physiological data and patient-reported outcomes of congestive heart failure patients. PLoS ONE, 2018, 13, e0190323.	1.1	19
53	Analysing Physiology of Interpersonal Conflicts Using a Wrist Device. Lecture Notes in Computer Science, 2018, , 162-167.	1.0	0
54	Predicting species identity of bumblebees through analysis of flight buzzing sounds. Bioacoustics, 2017, 26, 63-76.	0.7	31

Μιτја LuÅitrek

#	Article	IF	CITATIONS
55	Real-time physical activity and mental stress management with a wristband and a smartphone. , 2017, , .		8
56	e-Gibalec: Mobile application to monitor and encourage physical activity in schoolchildren. Journal of Ambient Intelligence and Smart Environments, 2017, 9, 595-609.	0.8	16
57	Monitoring stress with a wrist device using context. Journal of Biomedical Informatics, 2017, 73, 159-170.	2.5	228
58	Deep affect recognition from R-R intervals. , 2017, , .		8
59	An intelligent system to monitor refrigeration devices. Expert Systems, 2017, 34, e12199.	2.9	3
60	Management of Physical, Mental and Environmental Stress at the Workplace. , 2017, , .		4
61	Analyzing tennis game through sensor data with machine learning and multi-objective optimization. , 2017, , .		11
62	Energy-efficient data collection for context recognition. , 2017, , .		1
63	CrowdHEALTH: Holistic Health Records and Big Data Analytics for Health Policy Making and Personalized Health. Studies in Health Technology and Informatics, 2017, 238, 19-23.	0.2	5
64	How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?. Sensors, 2016, 16, 800.	2.1	95
65	An intelligent system to improve T-H-C parameters at the workplace. , 2016, , .		3
66	Continuous stress detection using a wrist device. , 2016, , .		131
67	Anticipatory system for T-H-C dynamics in room with real and virtual sensors. , 2016, , .		6
68	Activity Recognition for Diabetic Patients Using a Smartphone. Journal of Medical Systems, 2016, 40, 256.	2.2	28
69	What makes classification trees comprehensible?. Expert Systems With Applications, 2016, 62, 333-346.	4.4	43
70	Mobile Application to Stimulate Physical Activity in Schoolchildren. , 2016, , .		4
71	A computational method for designing diverse linear epitopes including citrullinated peptides with desired binding affinities to intravenous immunoglobulin. BMC Bioinformatics, 2016, 17, 155.	1.2	2
72	Estimating Energy Expenditure With Multiple Models Using Different Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1081-1087.	3.9	20

#	Article	IF	CITATIONS
73	Adapting activity recognition to a person with Multi-Classifier Adaptive Training. Journal of Ambient Intelligence and Smart Environments, 2015, 7, 171-185.	0.8	16
74	Fall Detection Using Location Sensors and Accelerometers. IEEE Pervasive Computing, 2015, 14, 72-79.	1.1	17
75	Context-based ensemble method for human energy expenditure estimation. Applied Soft Computing Journal, 2015, 37, 960-970.	4.1	42
76	Recognising lifestyle activities of diabetic patients with a smartphone. , 2015, , .		11
77	Demo abstract: Activity recognition and human energy expenditure estimation with a smartphone. , 2015, , .		10
78	Multi-Agent Architecture for Control of Heating and Cooling in a Residential Space. Computer Journal, 2015, 58, 1314-1329.	1.5	1
79	Competitive Live Evaluations of Activity-Recognition Systems. IEEE Pervasive Computing, 2015, 14, 70-77.	1.1	29
80	Recognition of high-level activities with a smartphone. , 2015, , .		4
81	Trade-off between Energy Consumption and Comfort Experience in Smart Buildings. Information Technology and Control, 2015, 44, 420-432.	1.1	1
82	Context-based fall detection and activity recognition using inertial and location sensors. Journal of Ambient Intelligence and Smart Environments, 2014, 6, 419-433.	0.8	22
83	A Multi-Agent Care System to Support Independent Living. International Journal on Artificial Intelligence Tools, 2014, 23, 1440001.	0.7	22
84	Combining domain knowledge and machine learning for robust fall detection. Expert Systems, 2014, 31, 163-175.	2.9	22
85	Telehealth using ECG sensor and accelerometer. , 2014, , .		23
86	Integrating Artificial and Human Intelligence into Tablet Production Process. AAPS PharmSciTech, 2014, 15, 1447-1453.	1.5	21
87	RAReFall — Real-time activity recognition and fall detection system. , 2014, , .		18
88	A non invasive, wearable sensor platform for multi-parametric remote monitoring in CHF patients. Health and Technology, 2013, 3, 99-109.	2.1	9
89	Energy Expenditure Estimation DEMO Application. Lecture Notes in Computer Science, 2013, , 281-286.	1.0	0

90 Ensembles of multiple sensors for human energy expenditure estimation. , 2013, , .

9

#	Article	IF	CITATIONS
91	Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors. Lecture Notes in Computer Science, 2013, , 94-108.	1.0	9
92	Epitope Predictions Indicate the Presence of Two Distinct Types of Epitope-Antibody-Reactivities Determined by Epitope Profiling of Intravenous Immunoglobulins. PLoS ONE, 2013, 8, e78605.	1.1	20
93	Title is missing!. Journal of Medical and Biological Engineering, 2013, 33, 406.	1.0	30
94	The pathology of heuristic search in the 8-puzzle. Journal of Experimental and Theoretical Artificial Intelligence, 2012, 24, 65-94.	1.8	7
95	Energy expenditure estimation with wearable accelerometers. , 2012, , .		11
96	Derivation of an interaction/regulation network describing pluripotency in human. Gene, 2012, 502, 99-107.	1.0	6
97	Tissue-based Alzheimer gene expression markers–comparison of multiple machine learning approaches and investigation of redundancy in small biomarker sets. BMC Bioinformatics, 2012, 13, 266.	1.2	25
98	Independent-valued minimax: Pathological or beneficial?. Theoretical Computer Science, 2012, 422, 59-77.	0.5	0
99	A Non Invasive, Wearable Sensor Platform for Multi-parametric Remote Monitoring in CHF Patients. Lecture Notes in Computer Science, 2012, , 140-147.	1.0	5
100	Context-Based Fall Detection Using Inertial and Location Sensors. Lecture Notes in Computer Science, 2012, , 1-16.	1.0	19
101	Multi-Classifier Adaptive Training: Specialising an Activity Recognition Classifier Using Semi-supervised Learning. Lecture Notes in Computer Science, 2012, , 193-207.	1.0	3
102	Medical Expert Support Tool (MEST): A Person-Centric Approach for Healthcare Management. Lecture Notes in Computer Science, 2012, , 99-106.	1.0	1
103	Learning Biomarkers of Pluripotent Stem Cells in Mouse. DNA Research, 2011, 18, 233-251.	1.5	20
104	When is it better not to look ahead?. Artificial Intelligence, 2010, 174, 1323-1338.	3.9	17
105	An Agent-Based Approach to Care in Independent Living. Lecture Notes in Computer Science, 2010, , 177-186.	1.0	99
106	Behavior Analysis Based on Coordinates of Body Tags. Lecture Notes in Computer Science, 2009, , 14-23.	1.0	13
107	Pathology in heuristic search. Al Communications, 2008, 21, 211-213.	0.8	1
108	Training a Genre Classifier for Automatic Classification of Web Pages. Journal of Computing and Information Technology, 2007, 15, 305.	0.2	5

#	Article	IF	CITATIONS
109	Is real-valued minimax pathological?. Artificial Intelligence, 2006, 170, 620-642.	3.9	12
110	A PROGRAM FOR PLAYING TAROK. ICGA Journal, 2003, 26, 190-197.	0.2	2