Dongdong Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/8721832/dongdong-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,694 65 127 39 h-index g-index citations papers 132 5,357 7.9 5.54 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
127	New-generation integrated devices based on dye-sensitized and perovskite solar cells. <i>Energy and Environmental Science</i> , 2018 , 11, 476-526	35.4	277
126	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. <i>ACS Nano</i> , 2015 , 9, 10287-95	16.7	274
125	High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach. <i>Electrochimica Acta</i> , 2014 , 116, 129-136	6.7	204
124	Integrated Photo-supercapacitor Based on Bi-polar TiO2 Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation. <i>Advanced Functional Materials</i> , 2014 , 24, 1840-1846	15.6	140
123	Light Management with Nanostructures for Optoelectronic Devices. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 1479-95	6.4	127
122	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. <i>Nature Communications</i> , 2019 , 10, 1112	17.4	124
121	Conductometric chemical sensor based on individual CuO nanowires. <i>Nanotechnology</i> , 2010 , 21, 485507	2 3.4	120
120	Facile method to enhance the adhesion of TiO[hanotube arrays to Ti substrate. <i>ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	110
119	Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. <i>Nanoscale Research Letters</i> , 2013 , 8, 391	5	110
118	Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. <i>Water Research</i> , 2019 , 155, 152-161	12.5	107
117	Enhanced supercapacitance in anodic TiO2 nanotube films by hydrogen plasma treatment. <i>Nanotechnology</i> , 2013 , 24, 455401	3.4	105
116	Formation of anodic aluminum oxide with serrated nanochannels. <i>Nano Letters</i> , 2010 , 10, 2766-71	11.5	98
115	Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 17053-8	9.5	96
114	Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires <i>Journal of Physical Chemistry C</i> , 2010 , 114, 17120-17126	3.8	88
113	Flexible photovoltaic technologies. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1233	7.1	87
112	Template-based Synthesis and Magnetic Properties of Cobalt Nanotube Arrays. <i>Advanced Materials</i> , 2008 , 20, 4575-4578	24	86
111	Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance. <i>ACS Nano</i> , 2014 , 8, 6484-90	16.7	74

(2014-2018)

110	Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 30732-30740	9.5	72	
109	Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions. <i>Nanotechnology</i> , 2015 , 26, 145603	3.4	71	
108	SnO2@Si coreEhell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13433	13	69	
107	Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device. <i>Chemistry of Materials</i> , 2010 , 22, 5707-5711	9.6	69	
106	Performance enhancement of thin-film amorphous silicon solar cells with low cost nanodent plasmonic substrates. <i>Energy and Environmental Science</i> , 2013 , 6, 2965	35.4	67	
105	Understanding the Enhancement Mechanisms of Surface Plasmon-Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO2 Nanotubes. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500169	4.6	63	
104	Forming Process of Anodic TiO2Nanotubes under a Preformed Compact Surface Layer. <i>Journal of the Electrochemical Society</i> , 2014 , 161, E135-E141	3.9	62	
103	Prototype of a scalable coreEhell Cu2O/TiO2 solar cell. <i>Chemical Physics Letters</i> , 2011 , 501, 446-450	2.5	62	
102	Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. <i>Scientific Reports</i> , 2014 , 4, 4243	4.9	57	
101	BiVO4 nanocrystals with controllable oxygen vacancies induced by Zn-doping coupled with graphene quantum dots for enhanced photoelectrochemical water splitting. <i>Chemical Engineering Journal</i> , 2019 , 372, 399-407	14.7	56	
100	Boosting Charge Separation and Transfer by Plasmon-Enhanced MoS2/BiVO4 pl Heterojunction Composite for Efficient Photoelectrochemical Water Splitting. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 6378-6387	8.3	56	
99	High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. <i>Nano Energy</i> , 2016 , 22, 539-547	17.1	53	
98	Tungsten based anisotropic metamaterial as an ultra-broadband absorber. <i>Optical Materials Express</i> , 2017 , 7, 606	2.6	51	
97	Quantitative relationship between nanotube length and anodizing current during constant current anodization. <i>Electrochimica Acta</i> , 2015 , 180, 147-154	6.7	48	
96	Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10203-10211	13	47	
95	Fabrication and supercapacitive performance of long anodic TiO 2 nanotube arrays using constant current anodization. <i>Electrochemistry Communications</i> , 2016 , 68, 23-27	5.1	45	
94	3D periodic multiscale TiOlarchitecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting. <i>Nanotechnology</i> , 2016 , 27, 115401	3.4	45	
93	Three-Dimensional Structural Engineering for Energy-Storage Devices: From Microscope to Macroscope. <i>ChemElectroChem</i> , 2014 , 1, 975-1002	4.3	45	

92	Weak localization and electron-electron interactions in indium-doped ZnO nanowires. <i>Nano Letters</i> , 2009 , 9, 3991-5	11.5	44
91	Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10929-36	9.5	43
90	Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. <i>Energy and Environmental Science</i> , 2014 , 7, 3611-3616	35.4	41
89	Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. <i>Journal of Photochemistry and Photobiology A: Chemistry,</i> 2016 , 319-320, 62-69	4.7	39
88	Efficient and Flexible Thin Film Amorphous Silicon Solar Cells on Nanotextured Polymer Substrate Using Solgel Based Nanoimprinting Method. <i>Advanced Functional Materials</i> , 2017 , 27, 1604720	15.6	38
87	Derivation of a Mathematical Model for the Growth of Anodic TiO2Nanotubes under Constant Current Conditions. <i>Journal of the Electrochemical Society</i> , 2017 , 164, E187-E193	3.9	37
86	The study on oxygen bubbles of anodic alumina based on high purity aluminum. <i>Materials Letters</i> , 2005 , 59, 3160-3163	3.3	36
85	Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance. <i>Nanoscale</i> , 2016 , 8, 8924-30	7.7	36
84	Self-Assembly of Periodic Serrated Nanostructures. <i>Chemistry of Materials</i> , 2009 , 21, 253-258	9.6	35
83	Electropolymerization of Aniline onto Anodic WO3 Film: An Approach to Extend Polyaniline Electroactivity Beyond pH 7. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 27449-27458	3.8	34
82	The effect of anions on the electrochemical properties of polyaniline for supercapacitors. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 14030-14041	3.6	33
81	Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays. <i>Nanoscale Research Letters</i> , 2011 , 6, 38	5	33
80	Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method. <i>Materials Letters</i> , 2008 , 62, 3114-3116	3.3	33
79	Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates. <i>ChemSusChem</i> , 2017 , 10, 2301-2308	8.3	32
78	Morphology Defects Guided Pore Initiation during the Formation of Porous Anodic Alumina. <i>ACS Applied Materials & Defects and Section 1</i> , 6, 2285-91	9.5	32
77	A simple route for decorating TiO2 nanoparticle over ZnO aggregates dye-sensitized solar cell. <i>Chemical Engineering Journal</i> , 2013 , 229, 190-196	14.7	32
76	Fabrication and Formation Mechanism of Triple-Layered TiO2Nanotubes. <i>Journal of the Electrochemical Society</i> , 2013 , 160, E125-E129	3.9	31
75	Valence Band Edge Shifts and Charge-transfer Dynamics in Li-Doped NiO Based p-type DSSCs. <i>Electrochimica Acta</i> , 2016 , 188, 309-316	6.7	30

(2014-2015)

74	Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. <i>Nano Energy</i> , 2015 , 11, 78-87	17.1	29
73	Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter. <i>Electrochimica Acta</i> , 2015 , 160, 33-42	6.7	28
72	Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region. <i>Nanoscale Research Letters</i> , 2016 , 11, 283	5	28
71	Antireflective and self-cleaning glass with robust moth-eye surface nanostructures for photovoltaic utilization. <i>Materials Research Bulletin</i> , 2019 , 109, 183-189	5.1	28
70	High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design. <i>Advanced Materials</i> , 2015 , 27, 6747-52	24	27
69	Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors. <i>ACS Applied Materials & Discounty of the Propagation </i>	9.5	23
68	Coupled optical and electrical modeling of thin-film amorphous silicon solar cells based on nanodent plasmonic substrates. <i>Nano Energy</i> , 2014 , 8, 141-149	17.1	23
67	Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells. <i>Dalton Transactions</i> , 2013 , 42, 5330-7	4.3	23
66	Interfacial Behavior and Stability Analysis of p-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOX/Metal Contacts. <i>Solar Rrl</i> , 2019 , 3, 1900274	7.1	22
65	Influence of interface properties on charge density, band edge shifts and kinetics of the photoelectrochemical process in p-type NiO photocathodes. <i>RSC Advances</i> , 2015 , 5, 71778-71784	3.7	21
64	Efficient suppression of nanograss during porous anodic TiO 2 nanotubes growth. <i>Applied Surface Science</i> , 2014 , 314, 505-509	6.7	21
63	Wafer-Scale Highly Ordered Anodic Aluminum Oxide by Soft Nanoimprinting Lithography for Optoelectronics Light Management. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601116	4.6	20
62	Microstructured superhydrophobic anti-reflection films for performance improvement of photovoltaic devices. <i>Materials Research Bulletin</i> , 2017 , 91, 208-213	5.1	20
61	Flexible broadband plasmonic absorber on moth-eye substrate. <i>Materials Today Energy</i> , 2017 , 5, 181-18	6 ₇	20
60	Structural engineering for high energy and voltage output supercapacitors. <i>Chemistry - A European Journal</i> , 2013 , 19, 6451-8	4.8	18
59	Fast fabrication of TiO2 hard stamps for nanoimprint lithography. <i>Materials Research Bulletin</i> , 2017 , 90, 253-259	5.1	17
58	Anisotropic performance of a superhydrophobic polyvinyl difluoride membrane with corrugated pattern in direct contact membrane distillation. <i>Desalination</i> , 2020 , 481, 114363	10.3	17
57	Spatially controllable plasmon enhanced water splitting photocurrent in Au/TiO2 E e2O3 cocatalyst system. <i>RSC Advances</i> , 2014 , 4, 45710-45714	3.7	17

56	Flexible Symmetric Supercapacitors Based on TiO\$_2\$ and Carbon Nanotubes. <i>IEEE Nanotechnology Magazine</i> , 2011 , 10, 706-709	2.6	17
55	The effect of Ni(CH3COO)2 post-treatment on the charge dynamics in p-type NiO dye-sensitized solar cells. <i>Journal of Materials Science</i> , 2015 , 50, 6668-6676	4.3	15
54	Simulation and Separation of Anodizing Current-Time Curves, Morphology Evolution of TiO2Nanotubes Anodized at Various Temperatures. <i>Journal of the Electrochemical Society</i> , 2014 , 161, H891-H895	3.9	15
53	Bilayer MoO/CrO Passivating Contact Targeting Highly Stable Silicon Heterojunction Solar Cells. <i>ACS Applied Materials & Discourse &</i>	9.5	14
52	Stable MoOX-Based Heterocontacts for p-Type Crystalline Silicon Solar Cells Achieving 20% Efficiency. <i>Advanced Functional Materials</i> , 2020 , 30, 2004367	15.6	14
51	UV photodetectors based on 3D periodic Au-decorated nanocone ZnO films. <i>Nanotechnology</i> , 2016 , 27, 365303	3.4	14
50	Fabrication of large diameter TiO 2 nanotubes for improved photoelectrochemical performance. <i>Materials Research Bulletin</i> , 2014 , 60, 348-352	5.1	13
49	Temperature-dependent photoconductance of heavily doped ZnO nanowires. <i>Nano Research</i> , 2011 , 4, 1110-1116	10	13
48	Scalable Production of Mechanically Robust Antireflection Film for Omnidirectional Enhanced Flexible Thin Film Solar Cells. <i>Advanced Science</i> , 2017 , 4, 1700079	13.6	12
47	Electrodeposition of polyaniline in long TiO2 nanotube arrays for high-areal capacitance supercapacitor electrodes. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 2349-2354	2.6	12
46	Boosting electrocatalytic activities of plasmonic metallic nanostructures by tuning the kinetic pre-exponential factor. <i>Journal of Catalysis</i> , 2017 , 354, 160-168	7.3	12
45	Effects of acetyl acetone-typed co-adsorbents on the interface charge recombination in dye-sensitized solar cell photoanodes. <i>Electrochimica Acta</i> , 2015 , 154, 190-196	6.7	12
44	High electro-catalytic counter electrode based on three-dimensional conductive grid for dye-sensitized solar cell. <i>Chemical Engineering Journal</i> , 2014 , 255, 424-430	14.7	12
43	Quantum transport in indium nitride nanowires. <i>Physical Review B</i> , 2011 , 83,	3.3	12
42	Effect of water content on ionic current, electronic current, and nanotube morphology in Ti anodizing process. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 1403-1409	2.6	11
41	Investigation on highly ordered porous anodic alumina membranes formed by high electric field anodization. <i>Materials Chemistry and Physics</i> , 2008 , 111, 168-171	4.4	11
40	Determination of the field strength and realization of the high-field anodization of aluminum. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 21696-21706	3.6	10
39	Inverted nanotaper-based Ag film for optical absorption and SERS applications. <i>Journal of Alloys and Compounds</i> , 2015 , 632, 634-638	5.7	10

(2014-2008)

38	Piezoelectric PZT thick films on LaNiO(3) buffered stainless steel foils for flexible device applications. <i>Journal Physics D: Applied Physics</i> , 2008 , 42, nihpa129997	3	10
37	Fabrication and magnetic behavior of chemical deposited Nill nanowire and nanotube arrays. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2009 , 41, 349-352	3	9
36	Magnetic force microscopy observation of undercooled Fe81Ga19magnetostrictive alloys. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 205405	3	9
35	Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology. <i>Journal of Semiconductors</i> , 2020 , 41, 062701	2.3	8
34	Phase-Transition-Induced VO2 Thin Film IR Photodetector and Threshold Switching Selector for Optical Neural Network Applications. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001254	6.4	8
33	High-Performance Dye-Sensitized Solar Cells Based on Colloid-Solution Deposition Planarized Fluorine-Doped Tin Oxide Substrates. <i>ACS Applied Materials & District Science</i> , 2018 , 10, 15697-15703	9.5	7
32	Interfacial Engineering of CuO Passivating Contact for Efficient Crystalline Silicon Solar Cells with an AlO Passivation Layer. <i>ACS Applied Materials & Englishing Solar Cells With Alo Passivation Layer</i> . <i>ACS Applied Materials & Englishing Solar Cells With English With English Solar Cells With English Solar Cells With English With English Solar Cells With English With Englis</i>	9.5	7
31	The rapidly reversible processes of activation and deactivation in amorphous silicon heterojunction solar cell under extensive light soaking. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 4045-4052	2.1	7
30	Enhanced CMOS image sensor by flexible 3D nanocone anti-reflection film. <i>Science Bulletin</i> , 2017 , 62, 130-135	10.6	6
29	Enhanced electroactivity at physiological pH for polyaniline in three-dimensional titanium oxide nanotube matrix. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 15796-9	3.6	6
28	Fabrication of porous anodic alumina membranes with ultrathick barrier layer. <i>Materials Letters</i> , 2008 , 62, 3228-3231	3.3	6
27	Combined Au-plasmonic nanoparticles with mesoporous carbon material (CMK-3) for photocatalytic water splitting. <i>Applied Physics Letters</i> , 2015 , 107, 073904	3.4	5
26	Thermoelectric properties of all-inorganic perovskite CsSnBr3: A combined experimental and theoretical study. <i>Chemical Physics Letters</i> , 2020 , 754, 137637	2.5	5
25	Post-annealing Effect on Optical and Electronic Properties of Thermally Evaporated MoO Thin Films as Hole-Selective Contacts for p-Si Solar Cells. <i>Nanoscale Research Letters</i> , 2021 , 16, 87	5	5
24	Recent progress of metal-halide perovskite-based tandem solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4538-4564	7.8	5
23	Progress and Future Prospects of Wide-Bandgap Metal-Compound-Based Passivating Contacts for Silicon Solar Cells <i>Advanced Materials</i> , 2022 , e2200344	24	5
22	Improved growth rate of anodized TiO2 nanotube arrays under reduced pressure field and light illumination. <i>Science Bulletin</i> , 2017 , 62, 332-338	10.6	4
21	Templated deposition of multiscale periodic metallic nanodot arrays with sub-10 nm gaps on rigid and flexible substrates. <i>Nanotechnology</i> , 2014 , 25, 465303	3.4	4

20	Improved electron-collection performance of dye sensitized solar cell based on three-dimensional conductive grid. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2013 , 259, 10-16	4.7	4
19	Silicon Solar Cells: High-Performance and Omnidirectional Thin-Film Amorphous Silicon Solar Cell Modules Achieved by 3D Geometry Design (Adv. Mater. 42/2015). <i>Advanced Materials</i> , 2015 , 27, 6768-6	7 2 4	4
18	Stable Molybdenum Nitride Contact for Efficient Silicon Solar Cells. <i>Physica Status Solidi - Rapid Research Letters</i> ,2100159	2.5	4
17	Interfacial Behavior and Stability Analysis of p-Type Crystalline Silicon Solar Cells Based on Hole-Selective MoOX/Metal Contacts. <i>Solar Rrl</i> , 2019 , 3, 1970105	7.1	4
16	High-performance hole-selective V 2 O X / SiO X / NiO X contact for crystalline silicon solar cells. EcoMat,	9.4	3
15	Surface Passivation of ITO on Heterojunction Solar Cells with Enhanced Cell Performance and Module Reliability. <i>ECS Journal of Solid State Science and Technology</i> , 2021 , 10, 035008	2	3
14	Structural and optical studies of molybdenum oxides thin films obtained by thermal evaporation and atomic layer deposition methods for photovoltaic application. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 3475-3486	2.1	3
13	NiOx/MoOx bilayer as an efficient hole-selective contact in crystalline silicon solar cells. <i>Cell Reports Physical Science</i> , 2021 , 2, 100684	6.1	3
12	Comparison of Energy Efficiency Between Fixed-speed and Variable-speed Wind Turbines. <i>Energy Engineering: Journal of the Association of Energy Engineers</i> , 2004 , 101, 71-80	0.6	2
11	High Weight-Specific Power Density of Thin-Film Amorphous Silicon Solar Cells on Graphene Papers. <i>Nanoscale Research Letters</i> , 2019 , 14, 324	5	2
10	Improved V2OX Passivating Contact for p-Type Crystalline Silicon Solar Cells by Oxygen Vacancy Modulation with a SiOX Tunnel Layer. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100989	4.6	2
9	Periodic molybdenum disc array for light trapping in amorphous silicon layer. AIP Advances, 2016, 6, 05	5305	2
8	Tunable work function of molybdenum oxynitride for electron-selective contact in crystalline silicon solar cells. <i>Applied Physics Letters</i> , 2022 , 120, 123902	3.4	2
7	Thin crystalline silicon with double-sided nano-hole array fabricated by soft UV-NIL and RIE. <i>Materials Research Express</i> , 2017 , 4, 055005	1.7	1
6	Silicon Solar Cells: Stable MoOX-Based Heterocontacts for p-Type Crystalline Silicon Solar Cells Achieving 20% Efficiency (Adv. Funct. Mater. 49/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 207032	25 ^{15.6}	1
5	Reply to Comment on "Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates". <i>ChemSusChem</i> , 2017 , 10, 2312-2315	8.3	
4	Substrate-free flexible thin film solar cells by graphene-mediated peel-off technology. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 10279-10287	2.1	
3	Tunable wettability of metallic films with assistance of porous anodic aluminum oxide. <i>Frontiers of Optoelectronics in China</i> , 2010 , 3, 317-320		

	WE-C-103-03: Design of a Novel 3D Field Emission Electron Source for High Power X-Ray Tube.	
2	Medical Physics, 2013 , 40, 481-481	4.

4.4

Polarizable High-Index Nanoparticles Used for Light-Induced Crystal-Silicon Passivation and Dielectric Antenna for High-Efficiency Solar Cell. *Solar Rrl*, **2021**, 5, 2100169