List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8721181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetragonal/orthorhombic-bismuth tungstate homojunction formed through in situ bismuth induced phase transformation as highly efficient photocatalyst for pollutant degradation. Journal of Colloid and Interface Science, 2022, 607, 269-280.	5.0	21
2	In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 303, 120899.	10.8	35
3	MOF-derived cobalt Disulfide/Nitrogen-doped carbon composite polyhedrons linked with Multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries. Chemical Engineering Journal, 2022, 431, 133924.	6.6	22
4	Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. Advanced Powder Technology, 2022, 33, 103365.	2.0	17
5	Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio. Sustainability, 2022, 14, 1152.	1.6	9
6	Porous core-shell B-doped silicon–carbon composites as electrode materials for lithium ion capacitors. Journal of Power Sources, 2022, 531, 231345.	4.0	11
7	Modulation of the coordination environment enhances the electrocatalytic efficiency of Mo single atoms toward water splitting. Journal of Materials Chemistry A, 2022, 10, 8784-8797.	5.2	17
8	Nitrogen-doped carbon armored Cobalt oxide hollow nanocubes electrochemically anchored on fluorine-doped tin oxide substrate for acidic oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 623, 327-336.	5.0	11
9	Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chemical Engineering Journal, 2022, 446, 137452.	6.6	37
10	Triple functionalization of carved N-doped carbon nanoboxes with synergistic trimetallic sulphide for high performance lithium–sulphur batteries. Journal of Materials Chemistry A, 2021, 9, 9028-9037.	5.2	20
11	High Performance Flexible Lithiumâ€lon Battery Electrodes: Ion Exchange Assisted Fabrication of Carbon Coated Nickel Oxide Nanosheet Arrays on Carbon Cloth. Advanced Functional Materials, 2021, 31, 2101199.	7.8	58
12	(Invited) Exploring Synergistic Effects for High Performance Catalysts of Electrolytic Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 1213-1213.	0.0	0
13	Cold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 286, 119916.	10.8	45
14	(NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2021, 290, 120049.	10.8	47
15	A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials. Energy Storage Materials, 2021, 41, 758-790.	9.5	24
16	Hollow Porous α-Fe ₂ O ₃ Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 1180-1192.	3.2	38
17	Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, 2021, 11, 2101827.	10.2	24

18 Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting (Adv.) Tj ETQq0 0 0 rgBT /Qverlock 19 Tf 50 62

#	Article	IF	CITATIONS
19	NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities. Applied Catalysis B: Environmental, 2020, 267, 118376.	10.8	77
20	Mixed Metal Phosphide Chainmail Catalysts Confined in N-Doped Porous Carbon Nanoboxes as Highly Efficient Water-Oxidation Electrocatalysts with Ultralow Overpotentials and Tafel Slopes. ACS Applied Materials & Interfaces, 2020, 12, 7153-7161.	4.0	47
21	N-doped carbon armored metal phosphides grown in-situ on nickel foam as chainmail catalysts toward high efficiency electrolytic water splitting. Journal of Colloid and Interface Science, 2020, 562, 42-51.	5.0	32
22	Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental, 2020, 279, 119375.	10.8	102
23	Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chemical Engineering Journal, 2020, 396, 125314.	6.6	41
24	Small highly mesoporous silicon nanoparticles for high performance lithium ion based energy storage. Chemical Engineering Journal, 2020, 400, 125958.	6.6	32
25	Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Applied Materials & Interfaces, 2020, 12, 15183-15193.	4.0	67
26	Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856.	2.8	32
27	Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy, 2019, 65, 103995.	8.2	111
28	Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Applied Catalysis B: Environmental, 2019, 258, 118023.	10.8	114
29	Alkaline Water Splitting: NiFe/(Ni,Fe) ₃ S ₂ Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities (Small Methods) Tj ETQq1 1 0.7	84 3. 1⁄4 rgB	T ¦O verlock
30	N-Doped Hierarchical Continuous Hollow Thin Porous Carbon Nanostructure for High-Performance Flexible Gel-Type Symmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 17020-17029.	3.2	9
31	Porous N-doped carbon nanostructure integrated with mesh current collector for Li-ion based energy storage. Chemical Engineering Journal, 2019, 374, 201-210.	6.6	24
32	Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals. Scientific Reports, 2019, 9, 8018.	1.6	14
33	NiFe Alloy Nanotube Arrays as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. ACS Applied Materials & Interfaces, 2019, 11, 24096-24106.	4.0	85
34	NiFe/(Ni,Fe) ₃ S ₂ Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities. Small Methods, 2019, 3, 1900234.	4.6	28
35	Selective and efficient cleavage of lignin model compound into value-added aromatic chemicals with CuFe2O4 nanoparticles decorated on partially reduced graphene oxides via sunlight-assisted heterogeneous Fenton processes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 264-271.	2.7	19
36	Ti-MOF derived TixFe1â^'xOy shells boost Fe2O3 nanorod cores for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 361, 660-670.	6.6	42

#	Article	IF	CITATIONS
37	In-Situ Grown, Passivator-Modulated Anodization Derived Synergistically Well-Mixed Ni–Fe Oxides from Ni Foam as High-Performance Oxygen Evolution Reaction Electrocatalyst. ACS Applied Energy Materials, 2019, 2, 743-753.	2.5	34
38	Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57, 1-13.	8.2	211
39	TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation. Journal of Colloid and Interface Science, 2018, 521, 216-225.	5.0	25
40	Particle-in-box nanostructured materials created via spatially confined pyrolysis as high performance bifunctional catalysts for electrochemical overall water splitting. Nano Energy, 2018, 48, 489-499.	8.2	90
41	Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performances of perovskite solar cells. Electrochimica Acta, 2018, 266, 118-129.	2.6	17
42	Aerosol-Based Self-Assembly of a Ag–ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir, 2018, 34, 5030-5039.	1.6	20
43	Core/shell p-BiOI/n-β-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency. Journal of Alloys and Compounds, 2018, 738, 138-144.	2.8	41
44	Mixed NiO/NiCo ₂ O ₄ Nanocrystals Grown from the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 417-426.	4.0	83
45	Few-Layer Graphene Sheet-Passivated Porous Silicon Toward Excellent Electrochemical Double-Layer Supercapacitor Electrode. Nanoscale Research Letters, 2018, 13, 242.	3.1	26
46	Heterogeneous Fenton Reaction Enabled Selective Colon Cancerous Cell Treatment. Scientific Reports, 2018, 8, 16580.	1.6	15
47	High performance perovskite solar cells fabricated from porous PbI2-xBrx prepared with mixture solvent pore generation treatment. Electrochimica Acta, 2018, 292, 399-406.	2.6	6
48	N-doped carbon dots@layer facilitated heterostructure of TiO2 polymorphs for efficient photoelectrochemical water oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 388-396.	2.7	14
49	Alkaline Water Splitting: In Situ Grown Bimetallic MOFâ€Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities (Adv. Energy Mater. 23/2018). Advanced Energy Materials, 2018, 8, 1870105.	10.2	4
50	In Situ Grown Bimetallic MOFâ€Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities. Advanced Energy Materials, 2018, 8, 1801065.	10.2	239
51	p-Cu ₂ S/n-Zn _x Cd _{1â^'x} S nanocrystals dispersed in a 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sunlight driven water splitting. Catalysis Science and Technology, 2017, 7, 1305-1314.	2.1	23
52	3D Porous Graphene Nanostructure from a Simple, Fast, Scalable Process for High Performance Flexible Gel-Type Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 4457-4467.	3.2	36
53	Solidâ€Liquid Interface Based Biphasic Reaction for Nanomaterial Preparation: Bundled CuO Nanorods as an Example and Their Outstanding Photocatalytic Efficiencies. ChemistrySelect, 2017, 2, 3276-3281.	0.7	0
54	Selfâ€Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700181.	3.9	36

#	Article	IF	CITATIONS
55	Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe ₂ O ₄ Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 1273-1279.	4.0	67
56	Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments. Journal of Colloid and Interface Science, 2017, 490, 802-811.	5.0	11
57	CuO nanorods from carrier solvent assisted interfacial reaction processes: An unexpected extraordinary Fe-free photocatalyst in sunlight assisted Fenton-like processes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 244-251.	2.7	13
58	Ag/AgFeO ₂ : An Outstanding Magnetically Responsive Photocatalyst for HeLa Cell Eradication. ACS Omega, 2017, 2, 4261-4268.	1.6	15
59	Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. Journal of Materials Chemistry A, 2017, 5, 19656-19663.	5.2	93
60	In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 9797-9806.	5.2	125
61	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	11.1	208
62	Exfoliated SnS 2 Nanoplates for Enhancing Direct Electrochemical Glucose Sensing. Electrochimica Acta, 2016, 219, 241-250.	2.6	31
63	SnFe ₂ O ₄ Nanocrystals as Highly Efficient Catalysts for Hydrogenâ€Peroxide Sensing. Chemistry - A European Journal, 2016, 22, 10877-10883.	1.7	17
64	Electrocatalysis: Wafer Scale Phase-Engineered 1T- and 2H-MoSe2 /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9658-9658.	11.1	3
65	Threeâ€Ðimensionally Extended Host Electrodes for Biosensor Applications. ChemElectroChem, 2016, 3, 552-557.	1.7	0
66	High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 26658-26665.	4.0	52
67	Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors. Nanoscale, 2015, 7, 7535-7539.	2.8	17
68	Pt coupled ZnFe ₂ O ₄ nanocrystals as a breakthrough photocatalyst for Fenton-like processes – photodegradation treatments from hours to seconds. Journal of Materials Chemistry A, 2015, 3, 18578-18585.	5.2	50
69	Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids. Journal of Alloys and Compounds, 2015, 640, 504-510.	2.8	26
70	A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe ₂ O ₄ nanocrystals from a carrier solvent assisted interfacial reaction process. Journal of Materials Chemistry A, 2015, 3, 12259-12267.	5.2	54
71	Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24453-24462.	5.2	82
72	Carbon black-derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for the iodide/tri-iodide couple. Nanoscale, 2015, 7, 1209-1215.	2.8	67

#	Article	IF	CITATIONS
73	Cu ₂ Oâ€Decorated Mesoporous TiO ₂ Beads as a Highly Efficient Photocatalyst for Hydrogen Production. ChemCatChem, 2014, 6, 293-300.	1.8	74
74	Porous fluorine-doped tin oxide as a promising substrate for electrochemical biosensors—demonstration in hydrogen peroxide sensing. Journal of Materials Chemistry B, 2014, 2, 7779-7784.	2.9	23
75	Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon, 2014, 69, 287-293.	5.4	94
76	Layered Double Hydroxides as an Effective Additive in Polymer Gelled Electrolyte based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17518-17525.	4.0	31
77	Layered Protonated Titanate Nanosheets Synthesized with a Simple One-Step, Low-Temperature, Urea-Modulated Method as an Effective Pollutant Adsorbent. ACS Applied Materials & Interfaces, 2014, 6, 16669-16678.	4.0	56
78	Synthesis and characterization of ZnO nanostructures using modified chemical bath deposition method. Materials Letters, 2014, 137, 401-404.	1.3	2
79	Hydrothermal synthesis, characterizations and photoluminescence study of single crystalline hexagonal ZnO nanorods with three dimensional flowerlike microstructures. Superlattices and Microstructures, 2014, 69, 239-252.	1.4	31
80	SnO ₂ Quantum Dots Synthesized with a Carrier Solvent Assisted Interfacial Reaction for Band-Structure Engineering of TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2014, 118, 14457-14463.	1.5	43
81	γ-Fe ₂ O ₃ /graphene nanocomposites as a stable high performance anode material for neutral aqueous supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16955-16962.	5.2	61
82	Manganese Oxide/Graphene Aerogel Composites as an Outstanding Supercapacitor Electrode Material. Chemistry - A European Journal, 2014, 20, 517-523.	1.7	86
83	Large enhancements in hydrogen production of TiO2 through a simple carbon decoration. Carbon, 2013, 62, 69-75.	5.4	14
84	Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 9665-9672.	3.8	62
85	ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale, 2013, 5, 7356.	2.8	85
86	One-step Sn4+-based anodic deposition for flattening of fluorine-doped tin oxide enabling large transmittance enhancements. RSC Advances, 2013, 3, 9011.	1.7	5
87	Graphene aerogels as a highly efficient counter electrode material for dye-sensitized solar cells. Carbon, 2013, 54, 291-299.	5.4	74
88	Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures. Journal of Alloys and Compounds, 2013, 579, 444-449.	2.8	19
89	Mesoporous Fluorocarbonâ€Modified Silica Aerogel Membranes Enabling Longâ€Term Continuous CO ₂ Capture with Large Absorption Flux Enhancements. ChemSusChem, 2013, 6, 437-442.	3.6	52
90	Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 2012, 14, 4732.	1.3	59

#	Article	IF	CITATIONS
91	Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing. Journal of Materials Chemistry, 2012, 22, 16259.	6.7	28
92	One-Step, Surfactant-Free Hydrothermal Method for Syntheses of Mesoporous TiO2 Nanoparticle Aggregates and Their Applications in High Efficiency Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 3255-3262.	3.2	53
93	Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO ₂ capture. Journal of Polymer Science Part A, 2012, 50, 2521-2526.	2.5	16
94	Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites. Advanced Functional Materials, 2012, 22, 5038-5043.	7.8	163
95	Ultralow overpotentials for oxygen evolution reactions achieved by nickel cobaltite aerogels. Journal of Materials Chemistry, 2011, 21, 18180.	6.7	68
96	Efficiency Enhancement Achieved with Elongated Titania Nanocrystals for Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, B1306.	1.3	5
97	Ultrafast formation of ZnO mesocrystals with excellent photocatalytic activities by a facile Tris-assisted antisolvent process. CrystEngComm, 2011, 13, 6218.	1.3	25
98	Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting. Journal of Materials Chemistry, 2011, 21, 12668.	6.7	41
99	Manganese Oxide/Carbon Aerogel Composite: an Outstanding Supercapacitor Electrode Material. Advanced Energy Materials, 2011, 1, 901-907.	10.2	175
100	Pyrolytic Carbon from an Aromatic Precursor and Its Application as a Counter Electrode in Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 1358-1364.	1.7	13
101	A Costâ€Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxideâ€Driven Sol–Gel Process. Advanced Materials, 2010, 22, 347-351.	11.1	1,108
102	Morphology-Dependent Optoelectronic Properties of Blue Emitter Poly(p-phenylene) Synthesized with Chemical Vapor Deposition Polymerization. Journal of Physical Chemistry B, 2010, 114, 7469-7473.	1.2	0
103	Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method. Journal of Physical Chemistry C, 2010, 114, 8867-8872.	1.5	97
104	Growth of zirconia and yttria-stabilized zirconia nanorod arrays assisted by phase transition. CrystEngComm, 2010, 12, 3664.	1.3	20
105	Differential Sensing of Serine and Tyrosine with Aligned CdS Nanowire Arrays Based on pHâ€Đependent Photoluminescence Behavior. ChemPhysChem, 2009, 10, 711-714.	1.0	7
106	A novel way of improving light harvesting in dye-sensitized solar cells – Electrodeposition of titania. Electrochemistry Communications, 2009, 11, 2180-2183.	2.3	27
107	A Facile Route To Create Surface Porous Polymer Films via Phase Separation for Antireflection Applications. ACS Applied Materials & amp; Interfaces, 2009, 1, 72-75.	4.0	31
108	Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009, 21, 3228-3233.	3.2	278

#	Article	IF	CITATIONS
109	A New Class of Opacified Monolithic Aerogels of Ultralow High-Temperature Thermal Conductivities. Journal of Physical Chemistry C, 2009, 113, 7424-7428.	1.5	66
110	Modulation and Improvement on Separation of Photoinduced Charge Carriers in CdSâ ^{~,} Metal Nanoheterostructures. Journal of Physical Chemistry C, 2009, 113, 17342-17346.	1.5	14
111	Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 2009, 131, 17690-17695.	6.6	230
112	Morphological modulation of optoelectronic properties of organic–inorganic nanohybrids prepared with a one-step co-fed chemical vapor deposition polymerization process. Journal of Materials Chemistry, 2009, 19, 6766.	6.7	8
113	Dopantâ€Induced Formation of Branched CdS Nanocrystals. Small, 2008, 4, 951-955.	5.2	27
114	Twoâ€Ðimensional Marangoniâ€Instabilityâ€Induced Periodic Patterns of Polymer Blend Films Cast on Tilted Substrates. Macromolecular Chemistry and Physics, 2008, 209, 615-624.	1.1	10
115	Alternating the Output of a CdS Nanowire Nanogenerator by a Whiteâ€Lightâ€Stimulated Optoelectronic Effect. Advanced Materials, 2008, 20, 3127-3130.	11.1	207
116	Tin oxide nanocrystals embedded in silica aerogel: Photoluminescence and photocatalysis. Microporous and Mesoporous Materials, 2008, 112, 580-588.	2.2	57
117	Spontaneous Reduction of Metal Ions Initiated by Ethylenediamine-Capped CdS Nanowires: A Sensing Mechanism Revealed. Chemistry of Materials, 2008, 20, 2854-2856.	3.2	42
118	Transparent, Hydrophobic Composite Aerogels with High Mechanical Strength and Low High-Temperature Thermal Conductivities. Journal of Physical Chemistry B, 2008, 112, 11881-11886.	1.2	86
119	Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime. Applied Physics Letters, 2008, 92, 121919.	1.5	9
120	Highly Photoluminescent Metal–Polymer Complexes prepared with a Facile Chemical Vapor Deposition Polymerization Process. Chemistry of Materials, 2008, 20, 2435-2437.	3.2	9
121	Superparamagnetism Found in Diluted Magnetic Semiconductor Nanowires: Mn-Doped CdSe. Journal of Physical Chemistry C, 2008, 112, 17964-17968.	1.5	34
122	Oxide nanodot arrays templated from polymer nano-channels via a novel vapor-transport-assisted wet chemistry process. Journal of Materials Research, 2008, 23, 2061-2066.	1.2	4
123	Formation of Nanowire Striations Driven by Marangoni Instability in Spin-Cast Polymer Thin Films. Langmuir, 2007, 23, 10069-10073.	1.6	14
124	Well-Aligned Ternary Cd ₁₋ <i>_x</i> Zn <i>_x</i> S Nanowire Arrays and Their Composition-Dependent Field Emission Properties. Journal of Physical Chemistry C, 2007, 111, 13418-13426.	1.5	45
125	Preparation, Characterization, and Electrophysical Properties of Nanostructured BiPO ₄ and Bi ₂ Se ₃ Derived from a Structurally Characterized, Single-Source Precursor Bi[Se ₂ P(O <i>i</i> Pr) ₂] ₃ . Journal of Physical Chemistry C. 2007. 111. 18538-18544.	1.5	100
126	Selectivity for patch-distributed reactive spherical surfaces. AICHE Journal, 2007, 53, 475-478.	1.8	0

SHIH-YUAN LU

#	Article	IF	CITATIONS
127	Synthesis of stoichiometric flowerlike ZnO nanorods with hundred per cent morphological yield. Solid State Communications, 2007, 142, 302-305.	0.9	40
128	Fabrication of synthetic opals composed of mesoporous SnO2 spheres with an anodization-assisted double template process. Electrochemistry Communications, 2007, 9, 2867-2870.	2.3	15
129	Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. Sensors and Actuators B: Chemical, 2007, 124, 452-458.	4.0	46
130	Preparation of Monolithic Silica Aerogel of Low Thermal Conductivity by Ambient Pressure Drying. Journal of the American Ceramic Society, 2007, 90, 2003-2007.	1.9	180
131	Fabrication of Patterned Inverse Opal Structure Through Physical Confinement Assembly and Selective Electrochemical Deposition. Journal of the American Ceramic Society, 2007, 90, 1956-1958.	1.9	8
132	Formation of Parallel Strips in Thin Films of Polystyrene/Poly(vinyl pyrrolidone) Blends via Spin Coating on Unpatterned Substrates. Langmuir, 2006, 22, 8029-8035.	1.6	31
133	[Cu4{Se2P(OiPr)2}4]:Â A Novel Precursor Enabling Preparation of Nonstoichiometric Copper Selenide (Cu2-xSe) Nanowires. Chemistry of Materials, 2006, 18, 3323-3329.	3.2	76
134	Nanostructures of Sn and Their Enhanced, Shape-Dependent Superconducting Properties. Small, 2006, 2, 268-273.	5.2	54
135	Room temperature chemical synthesis of lead selenide thin films with preferred orientation. Applied Surface Science, 2006, 253, 930-936.	3.1	29
136	Preferential Partition of Nanowires in Thin Films of Immiscible Polymer Blends. Macromolecular Rapid Communications, 2006, 27, 424-429.	2.0	17
137	One-step formation of core–shell sulfide–oxide nanorod arrays from a single precursor. Nanotechnology, 2006, 17, 4773-4782.	1.3	23
138	Immobilization and photocatalytic efficiency of titania nanoparticles on silica carrier spheres. Journal of Materials Research, 2006, 21, 2290-2297.	1.2	5
139	In2O3 nanorod formation induced by substrate structure. Journal of Crystal Growth, 2005, 285, 400-407.	0.7	54
140	A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells. Journal of the American Ceramic Society, 2005, 88, 277-283.	1.9	25
141	Evaporation-Assisted Formation of Three-Dimensional Photonic Crystals. Journal of the American Ceramic Society, 2005, 88, 974-976.	1.9	11
142	Optimal feeding for tower-type reactors. AICHE Journal, 2005, 51, 713-724.	1.8	3
143	Titania Nano-network Film Templated from Microphase-separated Block Copolymer and its Photocatalysis in Fractured Form. Journal of Materials Research, 2005, 20, 1523-1528.	1.2	8
144	Vaporâ^'Solid Growth of Sn Nanowires:Â Growth Mechanism and Superconductivity. Journal of Physical Chemistry B, 2005, 109, 4398-4403.	1.2	108

#	Article	IF	CITATIONS
145	Fabrication of Array of Nanoporous Tin Oxide Nanorods with Electrochemical Processes. Electrochemical and Solid-State Letters, 2005, 8, D9.	2.2	14
146	Patch size effect on diffusion and incorporation in dilute suspension of partially active spheres. Journal of Chemical Physics, 2004, 120, 3997-4003.	1.2	10
147	Superior mixing performance for airlift reactor with a net draft tube. Chemical Engineering Science, 2004, 59, 3021-3028.	1.9	22
148	Photoluminescence Resulting from Semiconductorâ~'Metal Solid Solution Observed in One-Dimensional Semiconductor Nanostructures. Langmuir, 2004, 20, 23-26.	1.6	37
149	Preparation of Nanosized ZnS-Passivated CdS Particle Films via the MOCVD Process with Co-fed Single Source Precursors. Langmuir, 2004, 20, 194-201.	1.6	38
150	Performance of airlift bioreactors with net draft tube. Enzyme and Microbial Technology, 2003, 33, 332-342.	1.6	35
151	Characterization of Polypyrrole-CdSe/CdTe Nanocomposite Films Prepared with an All Electrochemical Deposition Process. Journal of Physical Chemistry B, 2003, 107, 6974-6978.	1.2	21
152	Thermophoretic Motion of a Spherical Aerosol Particle in a Cylindrical Pore. Aerosol Science and Technology, 2003, 37, 455-459.	1.5	9
153	Polymer nanocomposite containing CdS–ZnS core–shell particles: Optical properties and morphology. Journal of Applied Physics, 2003, 93, 5789-5793.	1.1	48
154	Determination of effective conductivities of imperfect contact composites with first-passage simulation. Physical Review E, 2003, 68, 056705.	0.8	0
155	A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions. Journal of Chemical Physics, 2002, 116, 3128-3133.	1.2	10
156	Overall rate constants for diffusion and incorporation in clusters of spheres. Journal of Chemical Physics, 2002, 117, 3431-3439.	1.2	8
157	Size Effects on Silica Polymorphism. Journal of the American Ceramic Society, 2002, 85, 2590-2592.	1.9	9
158	Creeping motion of a spherical aerosol particle in a cylindrical pore. Chemical Engineering Science, 2002, 57, 1479-1484.	1.9	13
159	Thermophoretic motion of an aerosol particle in a non-concentric pore. Journal of Aerosol Science, 2001, 32, 1341-1358.	1.8	9
160	Coating window for double layer extrusion slot coating of poly (vinyl-alcohol) solutions. Polymer Engineering and Science, 2001, 41, 1823-1829.	1.5	14
161	Boundary effects on creeping motion of an aerosol particle in a non-concentric pore. Chemical Engineering Science, 2001, 56, 5207-5216.	1.9	10
162	Silicalite/poly(dimethylsiloxane) nanocomposite pervaporation membranes for acetic acid/water separation. Journal of Materials Research, 2001, 16, 3053-3059.	1.2	14

#	Article	IF	CITATIONS
163	Minimum Coating Thickness in Pore Size Reduction of Inorganic Substrates through Particle Deposition. Japanese Journal of Applied Physics, 2001, 40, 4652-4656.	0.8	0
164	Pd–Ag alloy films prepared by metallorganic chemical vapor deposition process. Thin Solid Films, 2000, 376, 67-72.	0.8	22
165	Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes. Journal of Membrane Science, 2000, 176, 159-167.	4.1	68
166	Membrane microstructure resulting from deposition of polydisperse particles. Journal of Membrane Science, 2000, 177, 55-71.	4.1	4
167	Coating Shape Effect on Effective Conductivities of Aligned Long Elliptic Cylinder Reinforced Composites. Japanese Journal of Applied Physics, 2000, 39, 5202-5208.	0.8	0
168	Covering of substrate holes through particle deposition. Journal of Applied Physics, 2000, 88, 2331-2335.	1.1	1
169	Diffusion and reaction in rectangular arrays of spheroids. Journal of Chemical Physics, 2000, 113, 6906-6915.	1.2	6
170	Deposition of Nanoâ€ S ize Titania—Silica Particles in a Hotâ€Wall CVD Process. Journal of the American Ceramic Society, 2000, 83, 709-712.	1.9	10
171	A reciprocal theorem for effective conductivities of two-dimensional composites containing multiply coated cylinders of arbitrary cross section. Journal of Applied Physics, 1999, 85, 1975-1977.	1.1	2
172	Effective conductivities of rectangular arrays of aligned spheroids. Journal of Applied Physics, 1999, 85, 264-269.	1.1	12
173	Modeling particle growth and deposition in a tubular CVD reactor. Journal of Crystal Growth, 1999, 200, 527-542.	0.7	19
174	Overall rate constants for dilute spheroid dispersions. Chemical Engineering Science, 1999, 54, 3917-3920.	1.9	6
175	Morphology of and surface modification by TiO2 deposits on a porous ceramic substrate. Journal of Materials Science, 1999, 34, 4293-4304.	1.7	15
176	Ceramic/Polyaniline Composite Porous Membranes. Journal of Porous Materials, 1999, 6, 153-159.	1.3	18
177	Rate constants of spherical dispersions: From diffusion-limited data to nondiffusion limited results. Journal of Chemical Physics, 1999, 110, 12263-12264.	1.2	5
178	Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. Journal of Applied Physics, 1998, 84, 2647-2655.	1.1	24
179	Diffusion and reaction in regular arrays of spheres. Journal of Chemical Physics, 1998, 109, 4985-4989.	1.2	12
180	Coating Sequence Effect for Composites Containing Multiply Coated Long Fibers. Journal of Composite Materials, 1998, 32, 1306-1324.	1.2	3

#	Article	IF	CITATIONS
181	Effects of Particle Surface Conditions on Conductivity of Spherical Dispersions. Journal of Colloid and Interface Science, 1997, 192, 386-397.	5.0	6
182	Effective conductivity of composites with spherical inclusions: Effect of coating and detachment. Journal of Applied Physics, 1996, 79, 609.	1.1	42
183	Effect of interfacial characteristics on effective conductivities of composites containing randomly distributed aligned long fibers. Chemical Engineering Science, 1996, 51, 4393-4404.	1.9	14
184	Effect of interfacial characteristics on effective conductivities of isotropic two-dimensional periodic composites. Chemical Engineering Science, 1995, 50, 2611-2631.	1.9	17
185	The Effective Thermal Conductivities of Composites with 2-D Arrays of Circular and Square Cylinders. Journal of Composite Materials, 1995, 29, 483-506.	1.2	40
186	Collision integrals of discrete-sectional model in simulating powder production. AICHE Journal, 1994, 40, 1761-1764.	1.8	17
187	Effective thermal conductivity of composites containing spheroidal inclusions. AICHE Journal, 1990, 36, 927-938.	1.8	37