Ricardo Weinlich

List of Publications by Citations

Source: https://exaly.com/author-pdf/872092/ricardo-weinlich-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41 5,221 24 42 g-index

42 6,271 12.8 5.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
41	Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. <i>Nature</i> , 2011 , 471, 363-7	50.4	871
40	Synchronized renal tubular cell death involves ferroptosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 16836-41	11.5	519
39	C11orf95-RELA fusions drive oncogenic NF-B signalling in ependymoma. <i>Nature</i> , 2014 , 506, 451-5	50.4	459
38	Necroptosis in development, inflammation and disease. <i>Nature Reviews Molecular Cell Biology</i> , 2017 , 18, 127-136	48.7	432
37	Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12024-9	11.5	391
36	RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. <i>Cell</i> , 2014 , 157, 1189-202	56.2	368
35	FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. <i>Journal of Immunology</i> , 2014 , 192, 1835-46	5.3	331
34	Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Reports, 2012, 1, 401-7	10.6	248
33	Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. <i>Frontiers in Immunology</i> , 2018 , 9, 2379	8.4	216
32	Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. <i>Cell Death and Differentiation</i> , 2016 , 23, 76-88	12.7	207
31	RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. <i>Molecular Cell</i> , 2011 , 44, 9-16	17.6	142
30	Protective roles for caspase-8 and cFLIP in adult homeostasis. <i>Cell Reports</i> , 2013 , 5, 340-8	10.6	112
29	Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-Induced shock. <i>Molecular Medicine</i> , 2012 , 18, 577-86	6.2	109
28	Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. <i>Immunity</i> , 2014 , 41, 947-59	32.3	101
27	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. <i>Cancer Cell</i> , 2017 , 32, 342-359.e10	24.3	83
26	The two faces of receptor interacting protein kinase-1. <i>Molecular Cell</i> , 2014 , 56, 469-80	17.6	80
25	Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. <i>Apoptosis: an International Journal on Programmed Cell Death</i> , 2005 , 10, 851-61	5.4	73

(2019-2020)

Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. <i>Materials Science and Engineering C</i> , 2020 , 107, 110264	8.3	64
Ripped to death. <i>Trends in Cell Biology</i> , 2011 , 21, 630-7	18.3	59
BnP1, a novel P-I metalloproteinase from Bothrops neuwiedi venom: biological effects benchmarking relatively to jararhagin, a P-III SVMP. <i>Toxicon</i> , 2008 , 51, 54-65	2.8	54
Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. <i>Journal of Immunology</i> , 2010 , 184, 3487-94	5.3	43
Comparison of the anti-apoptotic effects of Bcr-Abl, Bcl-2 and Bcl-x(L) following diverse apoptogenic stimuli. <i>FEBS Letters</i> , 2003 , 541, 57-63	3.8	34
A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. <i>Journal of Virology</i> , 2014 , 88, 503-15	6.6	33
TLR4/MYD88-dependent, LPS-induced synthesis of PGE2 by macrophages or dendritic cells prevents anti-CD3-mediated CD95L upregulation in T cells. <i>Cell Death and Differentiation</i> , 2008 , 15, 190	1 ^{-9.7}	24
Pomolic acid triggers mitochondria-dependent apoptotic cell death in leukemia cell line. <i>Cancer Letters</i> , 2005 , 219, 49-55	9.9	23
Effect of cell confluence on ultraviolet light apoptotic responses in DNA repair deficient cells. <i>Mutation Research - Reviews in Mutation Research</i> , 2003 , 544, 159-66	7	21
Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins. <i>Cancer Letters</i> , 2007 , 245, 315-20	9.9	20
Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2011 , 31, 1360-7	9.4	18
Control of death receptor ligand activity by posttranslational modifications. <i>Cellular and Molecular Life Sciences</i> , 2010 , 67, 1631-42	10.3	16
Sustained activation of p53 in confluent nucleotide excision repair-deficient cells resistant to ultraviolet-induced apoptosis. <i>DNA Repair</i> , 2008 , 7, 922-31	4.3	14
Mitochondrial DNA restriction and genomic maps of seven species of Melipona (Apidae: Meliponini). <i>Apidologie</i> , 2004 , 35, 365-370	2.3	10
TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. <i>European Respiratory Journal</i> , 2021 , 57,	13.6	9
Frontline Science: Autophagy is a cell autonomous effector mechanism mediated by NLRP3 to control Trypanosoma cruzi infection. <i>Journal of Leukocyte Biology</i> , 2019 , 106, 531-540	6.5	8
An oligonucleotide primer set for PCR amplification of the complete honey bee mitochondrial genome. <i>Apidologie</i> , 2008 , 39, 475-480	2.3	8
The impairment in the NLRP3-induced NO secretion renders astrocytes highly permissive to T. cruzi replication. <i>Journal of Leukocyte Biology</i> , 2019 , 106, 201-207	6.5	5
	Materials Science and Engineering C, 2020, 107, 110264 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 BnP1, a novel P-I metalloproteinase from Bothrops neuwiedi venom: biological effects benchmarking relatively to jararhagin, a P-III SVMP. Toxicon, 2008, 51, 54-65 Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. Journal of Immunology, 2010, 184, 3487-94 Comparison of the anti-apoptotic effects of Bcr-Abl, Bcl-2 and Bcl-x(L) following diverse apoptogenic stimuli. FEBS Letters, 2003, 541, 57-63 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 TLR4/MYD88-dependent, LPS-induced synthesis of PGE2 by macrophages or dendritic cells prevents anti-CD3-mediated CD95L upregulation in T cells. Cell Death and Differentiation, 2008, 15, 190 Pomolic acid triggers mitochondria-dependent apoptotic cell death in leukemia cell line. Cancer Letters, 2005, 219, 49-55 Effect of cell confluence on ultraviolet light apoptotic responses in DNA repair deficient cells. Mutation Research - Reviews in Mutation Research, 2003, 544, 159-66 Pomolic acid may overcome multidrug resistance mediated by overexpression of anti-apoptotic Bcl-2 proteins. Cancer Letters, 2007, 245, 315-20 Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1360-7 Control of death receptor ligand activity by posttranslational modifications. Cellular and Molecular Life Sciences, 2010, 67, 1631-42 Sustained activation of p53 in confluent nucleotide excision repair-deficient cells resistant to ultraviolet-induced apoptosis. DNA Repair, 2008, 7, 922-31 Mitochondrial DNA restriction and genomic maps of seven species of Melipona (Apidae: Meliponini). Apidologie, 2004, 35, 365-370 NIN-mediated alveolar macrophage necroptosis drives disease pathogenesis during res	Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Ripped to death. Trends in Cell Biology, 2011, 21, 630-7 Relatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. Journal of Immunology, 2010, 184, 3487-94 Comparison of the anti-apoptotic effects of Bcr-Abl, Bcl-2 and Bcl-x(L) following diverse apoptogenic stimuli. FEBS Letters, 2003, 541, 57-63 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 A novel cytotoxic sequence contributes to influenza A viral protein PB1-F2 pathogenicity and predisposition to secondary bacterial infection. Journal of Virology, 2014, 88, 503-15 Pomolic acid triggers mitochondria-dependent apoptotic cell death in leukemia cell line. Cancer Letters, 2005, 219, 495-5 Pomolic acid triggers mitochondria-dependent apoptotic responses in DNA repair deficient cells. Mutation Research - Reviews in Mutation Research - Revie

6	RIPK3 is a novel prognostic marker for lower grade glioma and further enriches IDH mutational status subgrouping. <i>Journal of Neuro-Oncology</i> , 2020 , 147, 587-594	4.8	5
5	Lapachol acetylglycosylation enhances its cytotoxic and pro-apoptotic activities in HL60 cells. <i>Toxicology in Vitro</i> , 2020 , 65, 104772	3.6	4
4	A scientific note on mtDNA gene order rearrangements among highly eusocial bees (Hymenoptera, Apidae). <i>Apidologie</i> , 2002 , 33, 355-356	2.3	4
3	Scientists contemplate unexplained death in Austrian Alps. <i>EMBO Molecular Medicine</i> , 2011 , 3, 363-6	12	1
2	Impact of Ethnic Origin on CRISPR/Cas Off-Target Prediction for Guide RNAs Used in Gene Therapy for Sickle Cell Disease and Other Genetic Diseases. <i>Blood</i> , 2021 , 138, 1857-1857	2.2	1
1	Necroptosis, the Other Main Caspase-Independent Cell Death. <i>Advances in Experimental Medicine and Biology</i> , 2021 , 1301, 123-138	3.6	1