Marcus E Peter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
2	FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex. Cell, 1996, 85, 817-827.	13.5	2,944
3	The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 2008, 22, 894-907.	2.7	2,007
4	Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Medicine, 2011, 17, 1498-1503.	15.2	1,740
5	Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 1997, 386, 517-521.	13.7	1,256
6	Apoptosis signaling by death receptors. FEBS Journal, 1998, 254, 439-459.	0.2	847
7	The Role of c-FLIP in Modulation of CD95-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 1541-1548.	1.6	707
8	FADD/MORT1 Is a Common Mediator of CD95 (Fas/APO-1) and Tumor Necrosis Factor Receptor-induced Apoptosis. Journal of Biological Chemistry, 1996, 271, 4961-4965.	1.6	680
9	The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 2010, 17, F19-F36.	1.6	567
10	Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells. Journal of Biological Chemistry, 1999, 274, 22532-22538.	1.6	534
11	c-FLIPL is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO Journal, 2002, 21, 3704-3714.	3.5	493
12	Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Current Opinion in Immunology, 1998, 10, 545-551.	2.4	443
13	Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11400-11405.	3.3	434
14	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	0.8	395
15	The CD95 Type I/Type II model. Seminars in Immunology, 2003, 15, 185-193.	2.7	387
16	Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression. Cell Cycle, 2009, 8, 843-852.	1.3	386
17	Molecular Ordering of the Initial Signaling Events of CD95. Molecular and Cellular Biology, 2002, 22, 207-220.	1.1	367
18	FLICE Is Predominantly Expressed as Two Functionally Active Isoforms, Caspase-8/a and Caspase-8/b. Journal of Biological Chemistry, 1997, 272, 26953-26958.	1.6	361

#	Article	IF	CITATIONS
19	The CD95 Receptor: Apoptosis Revisited. Cell, 2007, 129, 447-450.	13.5	352
20	CD95 promotes tumour growth. Nature, 2010, 465, 492-496.	13.7	339
21	Coordinated epigenetic repression of the miRâ€200 family and miRâ€205 in invasive bladder cancer. International Journal of Cancer, 2011, 128, 1327-1334.	2.3	335
22	Loss of E-Cadherin Promotes Ovarian Cancer Metastasis via α5-Integrin, which Is a Therapeutic Target. Cancer Research, 2008, 68, 2329-2339.	0.4	325
23	Activation of Mitochondria and Release of Mitochondrial Apoptogenic Factors by Betulinic Acid. Journal of Biological Chemistry, 1998, 273, 33942-33948.	1.6	323
24	MicroRNAs Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts in Ovarian Cancer. Cancer Discovery, 2012, 2, 1100-1108.	7.7	314
25	CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO Journal, 2004, 23, 3175-3185.	3.5	291
26	The Role of APO-1-Mediated Apoptosis in the Immune System. Immunological Reviews, 1994, 142, 175-191.	2.8	243
27	Interdimer processing mechanism of procaspase-8 activation. EMBO Journal, 2003, 22, 4132-4142.	3.5	227
28	The role of receptor internalization in CD95 signaling. EMBO Journal, 2006, 25, 1009-1023.	3.5	218
29	Let-7 Prevents Early Cancer Progression by Suppressing Expression of the Embryonic Gene HMGA2. Cell Cycle, 2007, 6, 2585-2590.	1.3	217
30	Identification of Let-7–Regulated Oncofetal Genes. Cancer Research, 2008, 68, 2587-2591.	0.4	195
31	Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes and Development, 2014, 28, 1191-1203.	2.7	193
32	Apoptosis signaling in lymphocytes. Current Opinion in Immunology, 1999, 11, 277-285.	2.4	186
33	miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes and Development, 2015, 29, 732-745.	2.7	182
34	Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube. Cancer Discovery, 2016, 6, 1342-1351.	7.7	168
35	mir-200c Regulates Induction of Apoptosis through CD95 by Targeting FAP-1. Molecular Cell, 2010, 38, 908-915.	4.5	167
36	Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. European Journal of Immunology, 1997, 27, 1207-1212.	1.6	165

#	Article	IF	CITATIONS
37	Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Reports, 2017, 19, 1858-1873.	2.9	164
38	Apoptosis meets necrosis. Nature, 2011, 471, 310-312.	13.7	163
39	Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO Journal, 2007, 26, 221-231.	3.5	146
40	Identification of the Cytolinker Plectin as a Major Early In Vivo Substrate for Caspase 8 during CD95- and Tumor Necrosis Factor Receptor-Mediated Apoptosis. Molecular and Cellular Biology, 2000, 20, 5665-5679.	1.1	144
41	Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. European Journal of Immunology, 1997, 27, 3492-3498.	1.6	140
42	Phosphorylation of FADD/ MORT1 at Serine 194 and Association with a 70-kDa Cell Cycle-Regulated Protein Kinase. Journal of Immunology, 2000, 164, 1236-1242.	0.4	140
43	Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Current Opinion in Cell Biology, 2005, 17, 610-616.	2.6	131
44	Letâ€7 modulates acquired resistance of ovarian cancer to Taxanes <i>via</i> IMPâ€1â€mediated stabilization of multidrug resistance 1. International Journal of Cancer, 2012, 130, 1787-1797.	2.3	131
45	Phosphorylation of FADD at Serine 194 by CKIα Regulates Its Nonapoptotic Activities. Molecular Cell, 2005, 19, 321-332.	4.5	130
46	Activation of the CD95 (APO-1/Fas) pathway in drug- and Î ³ -irradiation-induced apoptosis of brain tumor cells. Cell Death and Differentiation, 1998, 5, 884-893.	5.0	122
47	Serine Protease Inhibitor 6 Protects Cytotoxic T Cells from Self-Inflicted Injury by Ensuring the Integrity of Cytotoxic Granules. Immunity, 2006, 24, 451-461.	6.6	107
48	The flip side of FLIP. Biochemical Journal, 2004, 382, e1-3.	1.7	104
49	Apoptosis-independent functions of killer caspases. Current Opinion in Cell Biology, 2002, 14, 721-726.	2.6	103
50	Inactivation of Caspase-8 on Mitochondria of Bcl-xL-expressing MCF7-Fas Cells. Journal of Biological Chemistry, 2002, 277, 4351-4360.	1.6	102
51	Expression of c-FLIPL and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood, 2000, 95, 3478-3482.	0.6	101
52	NF-ÂB protects from the lysosomal pathway of cell death. EMBO Journal, 2003, 22, 5313-5322.	3.5	101
53	Bcl-xL Acts Downstream of Caspase-8 Activation by the CD95 Death-inducing Signaling Complex. Journal of Biological Chemistry, 1998, 273, 3388-3393.	1.6	100
54	The death effector domain protein family. Oncogene, 2003, 22, 8634-8644.	2.6	100

#	Article	IF	CITATIONS
55	Two CD95 tumor classes with different sensitivities to antitumor drugs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11445-11450.	3.3	100
56	Induction of apoptosis and activation of NFâ€₽̂B by CD95 require different signalling thresholds. EMBO Reports, 2004, 5, 1084-1089.	2.0	97
57	Foretinib (GSK1363089), an Orally Available Multikinase Inhibitor of c-Met and VEGFR-2, Blocks Proliferation, Induces Anoikis, and Impairs Ovarian Cancer Metastasis. Clinical Cancer Research, 2011, 17, 4042-4051.	3.2	97
58	Caspase Activation Is Required for Nitric Oxide–Mediated, CD95(APO-1/Fas)–Dependent and Independent Apoptosis in Human Neoplastic Lymphoid Cells. Blood, 1998, 91, 4311-4320.	0.6	88
59	Gadd45β mediates the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood, 2003, 102, 3270-3279.	0.6	81
60	CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Reports, 2017, 18, 2373-2386.	2.9	81
61	Phosphatidylinositol 3â€2-Kinase Blocks CD95 Aggregation and Caspase-8 Cleavage at the Death-Inducing Signaling Complex by Modulating Lateral Diffusion of CD95. Journal of Immunology, 2001, 166, 6564-6569.	0.4	80
62	Letter to the Editor. Cell Death and Differentiation, 1999, 6, 821-822.	5.0	75
63	CD95 and CD95L promote and protect cancer stem cells. Nature Communications, 2014, 5, 5238.	5.8	75
64	DEDD regulates degradation of intermediate filaments during apoptosis. Journal of Cell Biology, 2002, 158, 1051-1066.	2.3	74
65	Regulation of apoptosis by ubiquitination. Immunological Reviews, 2003, 193, 39-47.	2.8	71
66	How apoptosis got the immune system in shape. European Journal of Immunology, 2007, 37, S61-S70.	1.6	71
67	The TNF Receptor 1. Cell, 2003, 114, 148-150.	13.5	69
68	The Death Effector Domain-associated Factor Plays Distinct Regulatory Roles in the Nucleus and Cytoplasm. Journal of Biological Chemistry, 2001, 276, 31945-31952.	1.6	67
69	Death Induced by CD95 or CD95 Ligand Elimination. Cell Reports, 2014, 7, 208-222.	2.9	66
70	The Death Receptors. Results and Problems in Cell Differentiation, 1999, 23, 25-63.	0.2	66
71	APO-1(CD95)-dependent and -independent antigen receptor-induced apoptosis in human T and B cell lines. International Immunology, 1995, 7, 1873-1884.	1.8	64
72	Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. ELife, 2017, 6, .	2.8	62

#	Article	IF	CITATIONS
73	Identification of SNF1/AMP Kinase-related Kinase as an NF-κB-regulated Anti-apoptotic Kinase Involved in CD95-induced Motility and Invasiveness. Journal of Biological Chemistry, 2004, 279, 46742-46747.	1.6	61
74	Intermediate Filaments Control the Intracellular Distribution of Caspases During Apoptosis. American Journal of Pathology, 2004, 164, 395-407.	1.9	60
75	Does CD95 have tumor promoting activities?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2005, 1755, 25-36.	3.3	56
76	Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Experimental Cell Research, 2005, 311, 14-26.	1.2	55
77	A role for caspase-8 and c-FLIP L in proliferation and cell-cycle progression of primary hepatocytes. Carcinogenesis, 2005, 26, 2086-2094.	1.3	54
78	Assays of Endogenous Caspase Activities:Â A Comparison of Mass Spectrometry and Fluorescence Formats. Analytical Chemistry, 2006, 78, 4945-4951.	3.2	53
79	APOPTOSIS AND CASPASES. Cardiology Clinics, 2001, 19, 13-29.	0.9	48
80	Cell Cycle Effects by C-FADD Depend on Its C-terminal Phosphorylation Site. Journal of Biological Chemistry, 2003, 278, 41585-41588.	1.6	48
81	miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 2011, 6, e26521.	1.1	46
82	Isolation and Analysis of Components of CD95 (APO-1/Fas) Death-Inducing Signaling Complex. Methods, 1999, 17, 287-291.	1.9	44
83	PTEN Loss Promotes Mitochondrially Dependent Type II Fas-Induced Apoptosis via PEA-15. Molecular and Cellular Biology, 2009, 29, 1222-1234.	1.1	41
84	Actin dependent CD95 internalization is specific for Type I cells. FEBS Letters, 2003, 546, 185-188.	1.3	38
85	6mer seed toxicity in tumor suppressive microRNAs. Nature Communications, 2018, 9, 4504.	5.8	37
86	The relevance of NF-?B for CD95 Signaling in Tumor Cells. Cell Cycle, 2004, 3, 1235-1239.	1.3	36
87	microRNAs and death receptors. Cytokine and Growth Factor Reviews, 2008, 19, 303-311.	3.2	35
88	Interaction of the isolated domain II/III ofThermus thermophiluselongation factor Tu with the nucleotide exchange factor EF-Ts. Nucleic Acids Research, 1990, 18, 6889-6893.	6.5	34
89	S-Adenosylhomocysteine as a physiological modulator of Apo-1-mediated apoptosis. International Immunology, 1996, 8, 1139-1147.	1.8	34
90	ROS Eliminate Danger. Immunity, 2008, 29, 1-2.	6.6	34

#	Article	IF	CITATIONS
91	Small interfering <scp>RNA</scp> s based on huntingtin trinucleotide repeats are highly toxic to cancer cells. EMBO Reports, 2018, 19, .	2.0	32
92	CD95 Is Part of a Let-7/p53/miR-34 Regulatory Network. PLoS ONE, 2012, 7, e49636.	1.1	32
93	CD95/Fas ligand mRNA is toxic to cells. ELife, 2018, 7, .	2.8	32
94	Induction of DISE in ovarian cancer cells <i>in vivo</i> . Oncotarget, 2017, 8, 84643-84658.	0.8	31
95	Expression of c-FLIPL and resistance to CD95-mediated apoptosis of monocyte-derived dendritic cells: inhibition by bisindolylmaleimide. Blood, 2000, 95, 3478-3482.	0.6	30
96	Cell death in the colonic epithelium during inflammatory bowel diseases. Inflammatory Bowel Diseases, 2010, 16, 1071-1076.	0.9	29
97	The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Scientific Reports, 2020, 10, 1310.	1.6	25
98	Regulating Cancer Stem Cells the miR Way. Cell Stem Cell, 2010, 6, 4-6.	5.2	24
99	DISE: A Seed-Dependent RNAi Off-Target Effect That Kills Cancer Cells. Trends in Cancer, 2018, 4, 10-19.	3.8	22
100	Mapping small GTP-binding proteins on high-resolution two-dimensional gels by a combination of GTP binding and labeling within situ periodateoxidized GTP. Electrophoresis, 1994, 15, 283-288.	1.3	21
101	Analysis of the CD95 (APO-1/Fas) Death-Inducing Signaling Complex by High-Resolution Two-Dimensional Gel Electrophoresis. Methods in Enzymology, 2000, 322, 363-373.	0.4	19
102	CD95 is cytoprotective for intestinal epithelial cells in colitis. Inflammatory Bowel Diseases, 2010, 16, 1063-1070.	0.9	19
103	Trinucleotide Repeat Expansion Diseases, RNAi, and Cancer. Trends in Cancer, 2018, 4, 684-700.	3.8	19
104	Fas Ligand-Fas Signaling Participates in Light-Induced Apoptotic Death in Photoreceptor Cells. , 2012, 53, 3703.		18
105	miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers. BMC Genomics, 2013, 14, 179.	1.2	18
106	Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Frontiers in Immunology, 2018, 9, 2521.	2.2	16
107	CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. IScience, 2021, 24, 103538.	1.9	16
108	CD95 signaling deficient mice with a wild-type hematopoietic system are prone to hepatic neoplasia. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 41-51.	2.2	14

#	Article	IF	CITATIONS
109	Identification of DISE-inducing shRNAs by monitoring cellular responses. Cell Cycle, 2018, 17, 506-514.	1.3	14
110	The Ratio of Toxic-to-Nontoxic miRNAs Predicts Platinum Sensitivity in Ovarian Cancer. Cancer Research, 2021, 81, 3985-4000.	0.4	14
111	6mer Seed Toxicity in Viral microRNAs. IScience, 2020, 23, 100737.	1.9	13
112	Identification of the toxic 6mer seed consensus for human cancer cells. Scientific Reports, 2022, 12, 5130.	1.6	11
113	DISE/6mer seed toxicity-a powerful anti-cancer mechanism with implications for other diseases. Journal of Experimental and Clinical Cancer Research, 2021, 40, 389.	3.5	11
114	Identification of the N -tosyl-L-phenylalanyl chloromethylketone modification site in Thermus thermophilus elongation factor Tu. FEBS Letters, 1989, 257, 219-222.	1.3	10
115	CD95/Fas protects triple negative breast cancer from anti-tumor activity of NK cells. IScience, 2021, 24, 103348.	1.9	10
116	SPOROS: A pipeline to analyze DISE/6mer seed toxicity. PLoS Computational Biology, 2022, 18, e1010022.	1.5	10
117	Does the Caenorhabditis elegans protein CED-4 contain a region of homology to the mammalian death effector domain?. Cell Death and Differentiation, 1997, 4, 523-525.	5.0	8
118	Serine Protease Inhibitor 6-Deficient Mice Have Increased Neutrophil Immunity to <i>Pseudomonas aeruginosa</i> . Journal of Immunology, 2007, 179, 4390-4396.	0.4	8
119	Covalent binding of guanine nucleotides to the CD3-Î ³ chain of the T cell receptor/CD3 complex. European Journal of Immunology, 1993, 23, 461-466.	1.6	6
120	Synthesis of a Highâ€Purity Chemical Library Reveals a Potent Inducer of Oxidative Stress. ChemBioChem, 2010, 11, 1224-1227.	1.3	4
121	DICE. Cell Cycle, 2014, 13, 1373-1378.	1.3	4
122	Characterization of the GTP/GDP binding site in the murine CD3-ζ polypeptide chain. Immunology Letters, 1994, 43, 167-175.	1.1	3
123	Caspase Activation Is Required for Nitric Oxide–Mediated, CD95(APO-1/Fas)–Dependent and Independent Apoptosis in Human Neoplastic Lymphoid Cells. Blood, 1998, 91, 4311-4320.	0.6	3
124	Two faces of caspase-8. Nature Immunology, 2002, 3, 896-898.	7.0	2
125	Chapter Four Methods to Analyze the Palmitoylated CD95 High Molecular Weight Deathâ€Inducing Signaling Complex. Methods in Enzymology, 2008, 442, 83-100.	0.4	1
126	FOXO3a Mediates Both the Pro-Survival and Proapoptotic Effects of Glucocorticoids In Acute Lymphoblastic Leuekmia. Blood, 2010, 116, 1822-1822.	0.6	1

#	Article	IF	CITATIONS
127	Signaling through the Death Receptor CD95 (APO-1/FAS). Scientific World Journal, The, 2001, 1, 90-90.	0.8	0
128	Tumorimmunologie. , 1998, , 159-172.		0
129	Tumor Immunology. , 1998, , 153-165.		0