List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720156/publications.pdf Version: 2024-02-01

		43973	27345
117	11,541	48	106
papers	citations	h-index	g-index
125	125	125	15163
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts of Chemical Research, 2009, 42, 1097-1107.	7.6	1,638
2	Multifunctional Fe ₃ O ₄ @Polydopamine Core–Shell Nanocomposites for Intracellular mRNA Detection and Imaging-Guided Photothermal Therapy. ACS Nano, 2014, 8, 3876-3883.	7.3	599
3	Heterodimers of Nanoparticles:Â Formation at a Liquidâ^'Liquid Interface and Particle-Specific Surface Modification by Functional Molecules. Journal of the American Chemical Society, 2005, 127, 34-35.	6.6	532
4	PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials, 2010, 31, 3016-3022.	5.7	456
5	Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small, 2013, 9, 1533-1545.	5.2	456
6	Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nature Communications, 2013, 4, 2266.	5.8	399
7	FePt@CoS2Yolkâ^'Shell Nanocrystals as a Potent Agent to Kill HeLa Cells. Journal of the American Chemical Society, 2007, 129, 1428-1433.	6.6	392
8	Multifunctional Yolkâ^'Shell Nanoparticles: A Potential MRI Contrast and Anticancer Agent. Journal of the American Chemical Society, 2008, 130, 11828-11833.	6.6	354
9	Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging. Advanced Materials, 2019, 31, e1804567.	11.1	279
10	A Synergistically Enhanced <i>T</i> ₁ – <i>T</i> ₂ Dualâ€Modal Contrast Agent. Advanced Materials, 2012, 24, 6223-6228.	11.1	269
11	Intracellular Spatial Control of Fluorescent Magnetic Nanoparticles. Journal of the American Chemical Society, 2008, 130, 3710-3711.	6.6	228
12	Engineered Iron-Oxide-Based Nanoparticles as Enhanced <i>T</i> ₁ Contrast Agents for Efficient Tumor Imaging. ACS Nano, 2013, 7, 3287-3296.	7.3	226
13	A Biocompatible Method of Decorporation:Â Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood. Journal of the American Chemical Society, 2006, 128, 13358-13359.	6.6	224
14	Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide. Angewandte Chemie - International Edition, 2006, 45, 1220-1223.	7.2	220
15	Applications of nanomaterials inside cells. Nano Today, 2009, 4, 37-51.	6.2	218
16	Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends in Molecular Medicine, 2010, 16, 574-583.	3.5	204
17	Ultrasmall Nearâ€Infrared Nonâ€cadmium Quantum Dots for in vivo Tumor Imaging. Small, 2010, 6, 256-261.	5.2	174
18	Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:  A Simple Preparation for Multifunctional Nanostructures. Journal of the American Chemical Society, 2007, 129, 11928-11935.	6.6	168

#	Article	IF	CITATIONS
19	Combining Fluorescent Probes and Biofunctional Magnetic Nanoparticles for Rapid Detection of Bacteria in Human Blood. Advanced Materials, 2006, 18, 3145-3148.	11.1	165
20	Interplay between Longitudinal and Transverse Contrasts in Fe ₃ O ₄ Nanoplates with (111) Exposed Surfaces. ACS Nano, 2014, 8, 7976-7985.	7.3	157
21	Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects. Chemistry of Materials, 2015, 27, 3505-3515.	3.2	153
22	In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots. Bioconjugate Chemistry, 2010, 21, 604-609.	1.8	137
23	Tunable <i>T</i> ₁ and <i>T</i> ₂ contrast abilities of manganese-engineered iron oxide nanoparticles through size control. Nanoscale, 2014, 6, 10404-10412.	2.8	137
24	Nanoprobes for inÂvitro diagnostics of cancer and infectious diseases. Biomaterials, 2012, 33, 189-206.	5.7	128
25	Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials, 2011, 32, 2141-2148.	5.7	125
26	Surface and Interfacial Engineering of Iron Oxide Nanoplates for Highly Efficient Magnetic Resonance Angiography. ACS Nano, 2015, 9, 3012-3022.	7.3	124
27	A Novel Clinically Translatable Fluorescent Nanoparticle for Targeted Molecular Imaging of Tumors in Living Subjects. Nano Letters, 2012, 12, 281-286.	4.5	120
28	Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nature Communications, 2017, 8, 15468.	5.8	114
29	Real-Time Monitoring of Arsenic Trioxide Release and Delivery by Activatable T ₁ Imaging. ACS Nano, 2015, 9, 2749-2759.	7.3	106
30	Magnetite nanoparticles as smart carriers to manipulate the cytotoxicity of anticancer drugs: magnetic control and pH-responsive release. Journal of Materials Chemistry, 2012, 22, 15717.	6.7	102
31	Composition Tunable Manganese Ferrite Nanoparticles for Optimized <i>T</i> ₂ Contrast Ability. Chemistry of Materials, 2017, 29, 3038-3047.	3.2	88
32	Multifunctional Ag@Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. Journal of Materials Chemistry, 2011, 21, 16344.	6.7	87
33	Manganese-iron layered double hydroxide: a theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. Journal of Materials Chemistry B, 2017, 5, 3629-3633.	2.9	83
34	Highly magnetic iron carbide nanoparticles as effective T ₂ contrast agents. Nanoscale, 2014, 6, 726-730.	2.8	81
35	Activatable Mitochondriaâ€Targeting Organoarsenic Prodrugs for Bioenergetic Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 1403-1410.	7.2	81
36	Pro-Death or Pro-Survival: Contrasting Paradigms on Nanomaterial-Induced Autophagy and Exploitations for Cancer Therapy. Accounts of Chemical Research, 2019, 52, 3164-3176.	7.6	71

#	Article	IF	CITATIONS
37	Europium-engineered iron oxide nanocubes with high T ₁ and T ₂ contrast abilities for MRI in living subjects. Nanoscale, 2015, 7, 6843-6850.	2.8	68
38	Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir, 2010, 26, 4184-4187.	1.6	66
39	Nanoparticles modulate autophagic effect in a dispersity-dependent manner. Scientific Reports, 2015, 5, 14361.	1.6	66
40	The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS Nano, 2018, 12, 4605-4614.	7.3	62
41	Versatile Octapod-Shaped Hollow Porous Manganese(II) Oxide Nanoplatform for Real-Time Visualization of Cargo Delivery. Nano Letters, 2019, 19, 5394-5402.	4.5	61
42	A multiple gadolinium complex decorated fullerene as a highly sensitive T ₁ contrast agent. Chemical Communications, 2015, 51, 4390-4393.	2.2	59
43	Near-Infrared Quantum Dots as Optical Probes for Tumor Imaging. Current Topics in Medicinal Chemistry, 2010, 10, 1147-1157.	1.0	57
44	Geometrically confined ultrasmall gadolinium oxide nanoparticles boost the T ₁ contrast ability. Nanoscale, 2016, 8, 3768-3774.	2.8	57
45	Activated Surface Chargeâ€Reversal Manganese Oxide Nanocubes with High Surfaceâ€ŧoâ€Volume Ratio for Accurate Magnetic Resonance Tumor Imaging. Advanced Functional Materials, 2017, 27, 1700978.	7.8	53
46	ZnAs@SiO ₂ nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics, 2019, 9, 4391-4408.	4.6	52
47	Kinetic and Sensitive Analysis of Tyrosinase Activity Using Electron Transfer Complexes: In Vitro and Intracellular Study. Small, 2015, 11, 862-870.	5.2	50
48	Albumin-based nanoparticles loaded with hydrophobic gadolinium chelates as T ₁ –T ₂ dual-mode contrast agents for accurate liver tumor imaging. Nanoscale, 2017, 9, 4516-4523.	2.8	50
49	Impact of Morphology on Iron Oxide Nanoparticles-Induced Inflammasome Activation in Macrophages. ACS Applied Materials & Interfaces, 2018, 10, 41197-41206.	4.0	50
50	Cascaded Multiresponsive Self-Assembled ¹⁹ F MRI Nanoprobes with Redox-Triggered Activation and NIR-Induced Amplification. Nano Letters, 2020, 20, 363-371.	4.5	50
51	A Fluorinated Ionic Liquid-Based Activatable 19F MRI Platform Detects Biological Targets. CheM, 2020, 6, 1134-1148.	5.8	49
52	Gadolinium embedded iron oxide nanoclusters as T1–T2 dual-modal MRI-visible vectors for safe and efficient siRNA delivery. Nanoscale, 2013, 5, 8098.	2.8	47
53	A gadolinium-complex-based theranostic prodrug for <i>in vivo</i> tumour-targeted magnetic resonance imaging and therapy. Chemical Communications, 2019, 55, 4546-4549.	2.2	47
54	Self-assembled hybrid nanofibers confer a magnetorheological supramolecular hydrogel. Tetrahedron, 2007, 63, 7349-7357.	1.0	46

#	Article	IF	CITATIONS
55	Understanding the metabolic fate and assessing the biosafety of MnO nanoparticles by metabonomic analysis. Nanotechnology, 2013, 24, 455102.	1.3	45
56	Cation Exchange of Anisotropic-Shaped Magnetite Nanoparticles Generates High-Relaxivity Contrast Agents for Liver Tumor Imaging. Chemistry of Materials, 2016, 28, 3497-3506.	3.2	45
57	DOTA-Branched Organic Frameworks as Giant and Potent Metal Chelators. Journal of the American Chemical Society, 2020, 142, 198-206.	6.6	45
58	Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging. Bioactive Materials, 2022, 12, 214-245.	8.6	45
59	Intracellular self-assembly of nanoparticles for enhancing cell uptake. Chemical Communications, 2012, 48, 9738.	2.2	43
60	Activatable ¹⁹ F MRI Nanoprobes for Visualization of Biological Targets in Living Subjects. Advanced Materials, 2021, 33, e2005657.	11.1	42
61	A Selfâ€Assembled Biocompatible Nanoplatform for Multimodal MR/Fluorescence Imaging Assisted Photothermal Therapy and Prognosis Analysis. Small, 2018, 14, e1801612.	5.2	40
62	Facile integration of multiple magnetite nanoparticles for theranostics combining efficient MRI and thermal therapy. Nanoscale, 2015, 7, 2667-2675.	2.8	39
63	Gold nanoparticles impair autophagy flux through shape-dependent endocytosis and lysosomal dysfunction. Journal of Materials Chemistry B, 2018, 6, 8127-8136.	2.9	39
64	Biodegradable and Renal-Clearable Hollow Porous Iron Oxide Nanoboxes for in Vivo Imaging. Chemistry of Materials, 2018, 30, 7950-7961.	3.2	39
65	Recent advances of nanomedicines for liver cancer therapy. Journal of Materials Chemistry B, 2020, 8, 3747-3771.	2.9	37
66	Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst, The, 2013, 138, 3230.	1.7	36
67	Theranostic Au Cubic Nano-aggregates as Potential Photoacoustic Contrast and Photothermal Therapeutic Agents. Theranostics, 2014, 4, 534-545.	4.6	34
68	Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells. Scientific Reports, 2016, 6, 31009.	1.6	33
69	An integrative multi-omics approach uncovers the regulatory role of CDK7 and CDK4 in autophagy activation induced by silica nanoparticles. Autophagy, 2021, 17, 1426-1447.	4.3	33
70	Surface manganese substitution in magnetite nanocrystals enhances <i>T</i> ₁ contrast ability by increasing electron spin relaxation. Journal of Materials Chemistry B, 2018, 6, 401-413.	2.9	32
71	An Albumin-Binding <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal MRI Contrast Agents for Improved Sensitivity and Accuracy in Tumor Imaging. Bioconjugate Chemistry, 2019, 30, 1821-1829.	1.8	32
72	A fluorescent switch for sequentially and selectively sensing copper(<scp>ii</scp>) and <scp>l</scp> -histidine in vitro and in living cells. Analyst, The, 2014, 139, 3360-3364.	1.7	31

#	Article	IF	CITATIONS
73	Water bridge coordination on the metal-rich facets of Gd ₂ O ₃ nanoplates confers high T ₁ relaxivity. Nanoscale, 2016, 8, 17887-17894.	2.8	31
74	Targeted arsenite-loaded magnetic multifunctional nanoparticles for treatment of hepatocellular carcinoma. Nanotechnology, 2019, 30, 175101.	1.3	31
75	A facile route to core–shell nanoparticulate formation of arsenic trioxide for effective solid tumor treatment. Nanoscale, 2016, 8, 4373-4380.	2.8	30
76	Reversible redox-responsive ¹ H/ ¹⁹ F MRI molecular probes. Chemical Communications, 2020, 56, 4106-4109.	2.2	30
77	Silica nanovehicles endow arsenic trioxide with an ability to effectively treat cancer cells and solid tumors. Journal of Materials Chemistry B, 2014, 2, 6313.	2.9	29
78	lron-oxide-based twin nanoplates with strong <i>T</i> ₂ relaxation shortening for contrast-enhanced magnetic resonance imaging. Nanoscale, 2018, 10, 18398-18406.	2.8	27
79	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. ACS Nano, 2021, 15, 9924-9934.	7.3	27
80	Color-tunable fluorescent–magnetic core/shell multifunctional nanocrystals. Chemical Communications, 2009, , 4025.	2.2	24
81	Real-Time Monitoring <i>in Vivo</i> Behaviors of Theranostic Nanoparticles by Contrast-Enhanced T ₁ Imaging. Analytical Chemistry, 2015, 87, 8941-8948.	3.2	24
82	The cytotoxicity of gold nanoparticles is dispersity-dependent. Dalton Transactions, 2015, 44, 17911-17915.	1.6	24
83	Sensitive Contrast-Enhanced Magnetic Resonance Imaging of Orthotopic and Metastatic Hepatic Tumors by Ultralow Doses of Zinc Ferrite Octapods. Chemistry of Materials, 2019, 31, 1381-1390.	3.2	23
84	Fluorinated Gadolinium Chelate-Grafted Nanoconjugates for Contrast-Enhanced <i>T</i> ₁ -Weighted ¹ H and pH-Activatable ¹⁹ F Dual-Modal MRI. Analytical Chemistry, 2020, 92, 16293-16300.	3.2	23
85	Facile synthesis of aquo-cisplatin arsenite multidrug nanocomposites for overcoming drug resistance and efficient combination therapy. Biomaterials Science, 2019, 7, 262-271.	2.6	22
86	Activatable <i>T</i> ₁ Relaxivity Recovery Nanoconjugates for Kinetic and Sensitive Analysis of Matrix Metalloprotease 2. ACS Applied Materials & Interfaces, 2017, 9, 21688-21696.	4.0	21
87	A fluorinated bihydrazide conjugate for activatable sensing and imaging of hypochlorous acid by ¹⁹ F NMR/MRI. Chemical Communications, 2019, 55, 12455-12458.	2.2	21
88	Activatable Multiplexed ¹⁹ F Magnetic Resonance Imaging Visualizes Reactive Oxygen and Nitrogen Species in Drug-Induced Acute Kidney Injury. Analytical Chemistry, 2021, 93, 16552-16561.	3.2	20
89	Thermal decomposition of ethylenediaminetetraacetic acid in the presence of 1,2-phenylenediamine and hydrochloric acid. Journal of the Brazilian Chemical Society, 2006, 17, 880-885.	0.6	19
90	An extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy. Biomaterials Science, 2019, 7, 2480-2490.	2.6	19

#	Article	IF	CITATIONS
91	A Protein-Corona-Free <i>T</i> ₁ – <i>T</i> ₂ Dual-Modal Contrast Agent for Accurate Imaging of Lymphatic Tumor Metastasis. ACS Applied Materials & Interfaces, 2015, 7, 28286-28293.	4.0	18
92	Arsenite-loaded nanoparticles inhibit the invasion and metastasis of a hepatocellular carcinoma: <i>in vitro</i> and <i>in vivo</i> study. Nanotechnology, 2017, 28, 445101.	1.3	18
93	Enhancing Chemotherapy of p53â€Mutated Cancer through Ubiquitinationâ€Dependent Proteasomal Degradation of Mutant p53 Proteins by Engineered ZnFeâ€4 Nanoparticles. Advanced Functional Materials, 2020, 30, 2001994.	7.8	18
94	Geometrical confinement directed albumin-based nanoprobes as enhanced T ₁ contrast agents for tumor imaging. Journal of Materials Chemistry B, 2017, 5, 8004-8012.	2.9	16
95	Surface Engineering to Boost the Performance of Nanoparticle-Based T 1 Contrast Agents. European Journal of Inorganic Chemistry, 2019, 2019, 3801-3809.	1.0	16
96	A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations. Chemical Communications, 2021, 57, 11033-11036.	2.2	16
97	Improving the sensitivity of <i>T</i> ₁ contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics, 2021, 11, 6966-6982.	4.6	16
98	Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. Small Methods, 2021, 5, e2001025.	4.6	14
99	Redox-Activated Contrast-Enhanced <i>T</i> ₁ -Weighted Imaging Visualizes Glutathione-Mediated Biotransformation Dynamics in the Liver. ACS Nano, 2021, 15, 17831-17841.	7.3	14
100	Photoinduced Superhydrophilicity of Gd-Doped TiO ₂ Ellipsoidal Nanoparticles Boosts <i>T</i> ₁ Contrast Enhancement for Magnetic Resonance Imaging. Nano Letters, 2022, 22, 3219-3227.	4.5	14
101	NMR-based metabonomic analysis of MnO-embedded iron oxide nanoparticles as potential dual-modal contrast agents. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	13
102	Hypoxia-Activated Prodrug Enabling Synchronous Chemotherapy and HIF-1α Downregulation for Tumor Treatment. Bioconjugate Chemistry, 2021, 32, 983-990.	1.8	13
103	Fabrication of High Thermal Conductivity Carbon Nanotube Arrays by Self Assembled Fe 3 O 4 particles. CIRP Annals - Manufacturing Technology, 2007, 56, 245-248.	1.7	12
104	Silica sub-microspheres induce autophagy in an endocytosis dependent manner. RSC Advances, 2017, 7, 12496-12502.	1.7	11
105	Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomaterials Science, 2021, 10, 243-257.	2.6	11
106	Deep-tissue real-time imaging of drug-induced liver injury with peroxynitrite-responsive ¹⁹ F MRI nanoprobes. Chemical Communications, 2021, 57, 9622-9625.	2.2	10
107	Zwitterion-Coated Ultrasmall MnO Nanoparticles Enable Highly Sensitive <i>T</i> ₁ -Weighted Contrast-Enhanced Brain Imaging. ACS Applied Materials & Interfaces, 2022, 14, 3784-3791.	4.0	10
108	Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. RSC Advances, 2021, 11, 12867-12875.	1.7	8

#	Article	IF	CITATIONS
109	Fluorinated Ionic Liquid Based Multicolor ¹⁹ F MRI Nanoprobes for In Vivo Sensing of Multiple Biological Targets. Advanced Healthcare Materials, 2022, 11, e2102079.	3.9	8
110	Activatable Mitochondriaâ€Targeting Organoarsenic Prodrugs for Bioenergetic Cancer Therapy. Angewandte Chemie, 2021, 133, 1423-1430.	1.6	7
111	Multinuclear Mn(II) united-DOTA complexes with enhanced inertness and high MRI contrast ability. Cell Reports Physical Science, 2022, , 100920.	2.8	4
112	DOPAMINE SERVES AS A STABLE SURFACE MODIFIER FOR IRON OXIDE NANOPARTICLES. Journal of Molecular and Engineering Materials, 2013, 01, 1350001.	0.9	3
113	Low-temperature dynamics of magnetic nanoshells. Europhysics Letters, 2010, 91, 57006.	0.7	2
114	Tandem Chemoimmunotherapy by a Cascade-Responsive Molecular Prodrug. ACS Chemical Biology, 2022, 17, 762-767.	1.6	2
115	An Activatable ¹⁹ F MRI Molecular Probe for Sensing and Imaging of Norepinephrine. ChemistryOpen, 2022, 11, .	0.9	2
116	A dual-responsive doxorubicin–indoximod conjugate for programmed chemoimmunotherapy. RSC Chemical Biology, 2022, 3, 853-858.	2.0	1
117	Sequence-controlled heterolayered lanthanide-complex dendritic architectures constructed from	2.8	1