
Shunsuke Tei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719188/publications.pdf Version: 2024-02-01

Shunsuke Tei

#	Article	IF	CITATIONS
1	Treeâ€ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Global Change Biology, 2017, 23, 5179-5188.	4.2	74
2	Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Global Change Biology, 2018, 24, 4225-4237.	4.2	53
3	Effects of extreme drought and wet events for tree mortality: Insights from treeâ€ring width and carbon isotope ratio in a Siberian larch forest. Ecohydrology, 2019, 12, e2143.	1.1	38
4	Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Science, 2014, 8, 96-113.	0.5	37
5	8 million phenological and sky images from 29 ecosystems from the Arctic to the tropics: the Phenological Eyes Network. Ecological Research, 2018, 33, 1091-1092.	0.7	37
6	Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia. Polar Science, 2014, 8, 327-341.	0.5	35
7	Growth and physiological responses of larch trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia. Polar Science, 2014, 8, 183-195.	0.5	35
8	Reconstruction of soil moisture for the past 100 years in eastern Siberia by using δ ¹³ C of larch tree rings. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1256-1265.	1.3	30
9	An extreme flood caused by a heavy snowfall over the Indigirka River basin in Northeastern Siberia. Hydrological Processes, 2020, 34, 522-537.	1.1	27
10	Reconstruction of summer Palmer Drought Severity Index from δ13C of larch tree rings in East Siberia. Quaternary International, 2013, 290-291, 275-281.	0.7	24
11	Strong and stable relationships between tree-ring parameters and forest-level carbon fluxes in a Siberian larch forest. Polar Science, 2019, 21, 146-157.	0.5	23
12	Reconstructed summer Palmer Drought Severity Index since 1850 AD based on δ13C of larch tree rings in eastern Siberia. Journal of Hydrology, 2015, 529, 442-448.	2.3	22
13	Radial Growth and Physiological Response of Coniferous Trees to Arctic Amplification. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2786-2803.	1.3	20
14	Estimating methane emissions using vegetation mapping in the taiga–tundra boundary of a north-eastern Siberian lowland. Tellus, Series B: Chemical and Physical Meteorology, 2019, 71, 1581004.	0.8	14
15	Reconciliation of top-down and bottom-up CO ₂ fluxes in Siberian larch forest. Environmental Research Letters, 2017, 12, 125012.	2.2	13
16	Multi-year effect of wetting on CH ₄ flux at taiga–tundra boundary in northeastern Siberia deduced from stable isotope ratios of CH ₄ . Biogeosciences, 2019, 16, 755-768.	1.3	10
17	Usability of water surface reflectance for the determination of riverine dissolved methane during extreme flooding in northeastern Siberia. Polar Science, 2019, 21, 186-194.	0.5	8
18	Direct measurement of leaf area index in a deciduous needle-leaf forest, eastern Siberia. Polar Science, 2020, 25, 100550.	0.5	7

Shunsuke Tei

#	Article	IF	CITATIONS
19	Photographic records of plant phenology and spring river flush timing in a river lowland ecosystem at the taiga–tundra boundary, northeastern Siberia. Ecological Research, 2020, 35, 717-723.	0.7	7
20	lsotopic compositions of ground ice in near-surface permafrost in relation to vegetation and microtopography at the Taiga–Tundra boundary in the Indigirka River lowlands, northeastern Siberia. PLoS ONE, 2019, 14, e0223720.	1.1	5
21	Excessive positive response of modelâ€simulated land net primary production to climate changes over circumboreal forests. Plant-Environment Interactions, 2020, 1, 102-121.	0.7	5
22	Detection of year-to-year spring and autumn bio-meteorological variations in siberian ecosystems. Polar Science, 2020, 25, 100534.	0.5	5
23	Effects of climate dataset type on tree-ring analysis: A case study for Siberian forests. Polar Science, 2019, 21, 136-145.	0.5	4
24	Reconstructed July temperatures since AD 1800, based on a tree-ring chronology network in the Northwest Pacific region, and implied large-scale atmospheric–oceanic interaction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435, 203-209.	1.0	3
25	Seasonality in Human Interest in Berry Plants Detection by Google Trends. Frontiers in Forests and Global Change, 2021, 4, .	1.0	3
26	Oxygen Isotope Compositions of Cellulose in Earlywood of <i>Larix cajanderi</i> Determined by Water Source Rather Than Leaf Water Enrichment in a Permafrost Ecosystem, Eastern Siberia. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006125.	1.3	3
27	Seasonal variations in carbon dioxide exchange fluxes at a taiga–tundra boundary ecosystem in Northeastern Siberia. Polar Science, 2021, 28, 100644.	0.5	2
28	Geographical, Climatological, and Biological Characteristics of Tree Radial Growth Response to Autumn Climate Change. Frontiers in Forests and Global Change, 2021, 4, .	1.0	2
29	Adaptation of Willows in River Lowlands to Flooding under Arctic Amplification: Evidence from Nitrogen Content and Stable Isotope Dynamics. Wetlands, 2020, 40, 2413-2424.	0.7	1
30	Stable Water Isotope Assessment of Tundra Wetland Hydrology as a Potential Source of Arctic Riverine Dissolved Organic Carbon in the Indigirka River Lowland, Northeastern Siberia. Frontiers in Earth Science, 2021, 9, .	0.8	1
31	Water-Carbon Cycle in Dendrochronology. Ecological Studies, 2019, , 153-173.	0.4	Ο