
Catherine Numa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8718971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biological Conservation, 2007, 140, 308-317.	4.1	94
2	Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Scientific Reports, 2015, 5, 13912.	3.3	89
3	lvermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of the Total Environment, 2018, 618, 219-228.	8.0	80
4	Thermoregulation in endothermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. Journal of Insect Physiology, 2006, 52, 854-860.	2.0	79
5	Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity and Distributions, 2006, 12, 179-188.	4.1	57
6	Effect of landscape structure on the spatial distribution of Mediterranean dung beetle diversity. Diversity and Distributions, 2009, 15, 489-501.	4.1	51
7	Phyllostomid bat diversity in a variegated coffee landscape. Biological Conservation, 2005, 122, 151-158.	4.1	44
8	The influence of landscape structure on ants and dung beetles diversity in a Mediterranean savanna—Forest ecosystem. Ecological Indicators, 2011, 11, 831-839.	6.3	40
9	Dung Beetles Eat Acorns to Increase Their Ovarian Development and Thermal Tolerance. PLoS ONE, 2010, 5, e10114.	2.5	35
10	Roles of endothermy in niche differentiation for ballâ€rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecological Entomology, 2007, 32, 544-551.	2.2	32
11	Current protected sites do not allow the representation of endangered invertebrates: the Spanish case. Insect Conservation and Diversity, 2012, 5, 414-421.	3.0	28
12	The Comparative Effectiveness of Rodents and Dung Beetles as Local Seed Dispersers in Mediterranean Oak Forests. PLoS ONE, 2013, 8, e77197.	2.5	24
13	Acorn preference by the dung beetle, Thorectes lusitanicus, under laboratory and field conditions. Animal Behaviour, 2007, 74, 1697-1704.	1.9	22
14	Spatiotemporal Variation of Scarab Beetle Assemblages (Coleoptera: Scarabaeidae: Dynastinae,) Tj ETQq0 0 0 rgl the Entomological Society of America, 2010, 103, 956-964.	3T /Overlo 2.5	ck 10 Tf 50 2 17
15	Comparing Dung Beetle Species Assemblages Between Protected Areas and Adjacent Pasturelands in a Mediterranean Savanna Landscape. Rangeland Ecology and Management, 2012, 65, 137-143.	2.3	16
16	First assessment of the comparative toxicity of ivermectin and moxidectin in adult dung beetles: Sub-lethal symptoms and pre-lethal consequences. Scientific Reports, 2018, 8, 14885.	3.3	14
17	Scaling local abundance determinants in mediterranean dung beetles. Insect Conservation and Diversity, 2012, 5, 106-117.	3.0	12
18	Alarming decline of freshwater trigger species in western Mediterranean key biodiversity areas. Conservation Biology, 2021, 35, 1367-1379.	4.7	12

CATHERINE NUMA

#	Article	IF	CITATIONS
19	Interactions between rabbits and dung beetles influence the establishment of Erodium praecox. Journal of Arid Environments, 2009, 73, 713-718.	2.4	10
20	Acorn preference under field and laboratory conditions by two flightless Iberian dung beetle species (Thorectes baraudi and Jekelius nitidus): implications for recruitment and management of oak forests in central Spain. Ecological Entomology, 2011, 36, 104-110.	2.2	7
21	Extinction trends of threatened invertebrates in peninsular Spain. Journal of Insect Conservation, 2013, 17, 235-244.	1.4	7
22	Assessing the regional conservation status of sponges (Porifera): the case of the Aegean ecoregion. Mediterranean Marine Science, 0, , .	1.6	6
23	Using local autocorrelation analysis to identify conservation areas: an example considering threatened invertebrate species in Spain. Biodiversity and Conservation, 2012, 21, 2127-2137.	2.6	3