Rahul L Khade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8718791/publications.pdf

Version: 2024-02-01

25 papers 575 citations

623734 14 h-index 610901 24 g-index

27 all docs

27 docs citations

times ranked

27

888 citing authors

#	Article	IF	CITATIONS
1	Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chemical Science, 2021, 12, 6569-6579.	7.4	2
2	Insight into the preferential N-binding versus O-binding of nitrosoarenes to ferrous and ferric heme centers. Dalton Transactions, 2021, 50, 3487-3498.	3. 3	3
3	Insights into the Observed <i>trans</i> -Bond Length Variations upon NO Binding to Ferric and Ferrous Porphyrins with Neutral Axial Ligands. ACS Omega, 2021, 6, 24777-24787.	3 . 5	2
4	Not Limited to Iron: A Cobalt Heme–NO Model Facilitates N–N Coupling with External NO in the Presence of a Lewis Acid to Generate N 2 O. Angewandte Chemie, 2019, 131, 18771-18776.	2.0	1
5	Not Limited to Iron: A Cobalt Heme–NO Model Facilitates N–N Coupling with External NO in the Presence of a Lewis Acid to Generate N 2 O. Angewandte Chemie - International Edition, 2019, 58, 18598-18603.	13.8	9
6	Biocatalytic Strategy for Highly Diastereo―and Enantioselective Synthesis of 2,3â€Đihydrobenzofuranâ€Based Tricyclic Scaffolds. Angewandte Chemie, 2019, 131, 10254-10258.	2.0	7
7	Mechanistic Investigation of Biocatalytic Heme Carbenoid Siâ^'H Insertions. ChemCatChem, 2019, 11, 3101-3108.	3.7	20
8	Biocatalytic Strategy for Highly Diastereo―and Enantioselective Synthesis of 2,3â€Dihydrobenzofuranâ€Based Tricyclic Scaffolds. Angewandte Chemie - International Edition, 2019, 58, 10148-10152.	13.8	57
9	Synthesis, Characterization, and Theoretical Investigation of a Transition State Analogue for Proton Transfer during C–H Activation by a Rhodium-Pincer Complex. Organometallics, 2019, 38, 1407-1412.	2.3	11
10	Lewis Acid Activation of the Ferrous Heme–NO Fragment toward the N–N Coupling Reaction with NO To Generate N ₂ 0. Journal of the American Chemical Society, 2018, 140, 4204-4207.	13.7	29
11	Catalytic Role of Conserved Asparagine, Glutamine, Serine, and Tyrosine Residues in Isoprenoid Biosynthesis Enzymes. ACS Catalysis, 2018, 8, 4299-4312.	11.2	19
12	Bisphosphonate-Generated ATP-Analogs Inhibit Cell Signaling Pathways. Journal of the American Chemical Society, 2018, 140, 7568-7578.	13.7	27
13	Câ^'H Insertions by Iron Porphyrin Carbene: Basic Mechanism and Origin of Substrate Selectivity. Chemistry - A European Journal, 2017, 23, 17654-17658.	3.3	29
14	Frontispiece: Câ^'H Insertions by Iron Porphyrin Carbene: Basic Mechanism and Origin of Substrate Selectivity. Chemistry - A European Journal, 2017, 23, .	3.3	0
15	HNOâ€Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angewandte Chemie - International Edition, 2016, 55, 15058-15061.	13.8	16
16	HNOâ€Binding in Heme Proteins: Effects of Iron Oxidation State, Axial Ligand, and Protein Environment. Angewandte Chemie, 2016, 128, 15282-15285.	2.0	7
17	Hydride Attack on a Coordinated Ferric Nitrosyl: Experimental and DFT Evidence for the Formation of a Heme Model–HNO Derivative. Journal of the American Chemical Society, 2016, 138, 104-107.	13.7	51
18	Solidâ€State ¹⁷ O NMR Spectroscopy of Paramagnetic Coordination Compounds. Angewandte Chemie - International Edition, 2015, 54, 4753-4757.	13.8	44

#	Article	IF	CITATION
19	Catalytic and Biocatalytic Iron Porphyrin Carbene Formation: Effects of Binding Mode, Carbene Substituent, Porphyrin Substituent, and Protein Axial Ligand. Journal of the American Chemical Society, 2015, 137, 7560-7563.	13.7	78
20	A Distonic Radical-lon for Detection of Traces of Adventitious Molecular Oxygen (O ₂) in Collision Gases Used in Tandem Mass Spectrometers. Journal of the American Society for Mass Spectrometry, 2014, 25, 1670-1673.	2.8	4
21	Iron Porphyrin Carbenes as Catalytic Intermediates: Structures, Mössbauer and NMR Spectroscopic Properties, and Bonding. Angewandte Chemie - International Edition, 2014, 53, 7574-7578.	13.8	59
22	Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis?. Angewandte Chemie - International Edition, 2013, 52, 6522-6525.	13.8	17
23	Isoprenoid Biosynthesis: Ferraoxetane or Allyl Anion Mechanism for IspH Catalysis?. Angewandte Chemie, 2013, 125, 6650-6653.	2.0	4
24	Structural, EPR Superhyperfine, and NMR Hyperfine Properties of the Cuâ "Octarepeat Binding Site in the Prion Protein. Journal of Physical Chemistry B, 2011, 115, 2663-2670.	2.6	8
25	Inhibition of A \hat{I}^2 42 Peptide Aggregation by a Binuclear Ruthenium(II) \hat{a} Platinum(II) Complex: Potential for Multimetal Organometallics as Anti-amyloid Agents. ACS Chemical Neuroscience, 2010, 1, 691-701.	3.5	54