Xin-Ming Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8718755/publications.pdf

Version: 2024-02-01

304743 315739 1,451 38 22 38 h-index citations g-index papers 39 39 39 2005 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	KCa3.1 in diabetic kidney disease. Current Opinion in Nephrology and Hypertension, 2022, 31, 129-134.	2.0	3
2	A single-domain i-body, AD-114, attenuates renal fibrosis through blockade of CXCR4. JCI Insight, 2022, 7,	5.0	5
3	Mesenchymal Stem Cell-Derived Exosomes: Toward Cell-Free Therapeutic Strategies in Chronic Kidney Disease. Frontiers in Medicine, 2022, 9, 816656.	2.6	14
4	KCa3.1 Mediates Dysregulation of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 573814.	3.7	10
5	Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury Through Inhibiting TGF-Î ² 1 Signaling Pathways. Frontiers in Cell and Developmental Biology, 2021, 9, 603802.	3.7	19
6	The Mitochondrial Kinase PINK1 in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 1525.	4.1	9
7	Mesenchymal Stem Cell-Derived Extracellular Vesicles to the Rescue of Renal Injury. International Journal of Molecular Sciences, 2021, 22, 6596.	4.1	37
8	RIPK3 blockade attenuates kidney fibrosis in a folic acid model of renal injury. FASEB Journal, 2020, 34, 10286-10298.	0.5	20
9	RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy. Scientific Reports, 2020, 10, 10458.	3.3	24
10	RIPK3: A New Player in Renal Fibrosis. Frontiers in Cell and Developmental Biology, 2020, 8, 502.	3.7	12
11	MicroRNA as novel biomarkers and therapeutic targets in diabetic kidney disease: An update. FASEB BioAdvances, 2019, 1, 375-388.	2.4	25
12	Metformin attenuates folicâ€acid induced renal fibrosis in mice. Journal of Cellular Physiology, 2018, 233, 7045-7054.	4.1	23
13	The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy. PLoS ONE, 2018, 13, e0192800.	2.5	15
14	Fluorescent Labeling and Biodistribution of Latex Nanoparticles Formed by Surfactantâ€Free RAFT Emulsion Polymerization. Macromolecular Bioscience, 2017, 17, 1600366.	4.1	26
15	Increased sphingosine 1â€phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 56-66.	1.9	48
16	Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Scientific Reports, 2016, 6, 29196.	3.3	106
17	KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways. Scientific Reports, 2016, 6, 23884.	3.3	60
18	Preparation of Inert Polystyrene Latex Particles as MicroRNA Delivery Vectors by Surfactant-Free RAFT Emulsion Polymerization. Biomacromolecules, 2016, 17, 965-973.	5.4	26

#	Article	IF	CITATIONS
19	The role of KrÃ⅓ppelâ€like factor 4 in transforming growth factorâ€∢i>β⟨li>–induced inflammatory and fibrotic responses in human proximal tubule cells. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 680-686.	1.9	21
20	KCa3.1. Current Opinion in Nephrology and Hypertension, 2015, 24, 61-66.	2.0	9
21	High Glucose Induces CCL20 in Proximal Tubular Cells via Activation of the KCa3.1 Channel. PLoS ONE, 2014, 9, e95173.	2.5	17
22	Role of the potassium channel KCa3.1Âin diabetic nephropathy. Clinical Science, 2014, 127, 423-433.	4.3	15
23	KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis. Nephrology Dialysis Transplantation, 2014, 29, 313-324.	0.7	44
24	Inhibition of KCa3.1 suppresses TGF- \hat{l}^21 induced MCP-1 expression in human proximal tubular cells through Smad3, p38 and ERK1/2 signaling pathways. International Journal of Biochemistry and Cell Biology, 2014, 47, 1-10.	2.8	27
25	Thioredoxin-interacting protein mediates dysfunction of tubular autophagy in diabetic kidneys through inhibiting autophagic flux. Laboratory Investigation, 2014, 94, 309-320.	3.7	50
26	MiRNA-200b represses transforming growth factor- \hat{l}^21 -induced EMT and fibronectin expression in kidney proximal tubular cells. American Journal of Physiology - Renal Physiology, 2013, 304, F1266-F1273.	2.7	74
27	Blockade of KCa3.1 Ameliorates Renal Fibrosis Through the TGF-Î ² 1/Smad Pathway in Diabetic Mice. Diabetes, 2013, 62, 2923-2934.	0.6	77
28	The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor- \hat{l}^3 in the regulation of macrophage inflammatory protein- $3\hat{l}\pm$ at early onset of diabetes. International Journal of Biochemistry and Cell Biology, 2011, 43, 383-392.	2.8	26
29	Transcription Factors Krýppel-Like Factor 6 and Peroxisome Proliferator-Activated Receptor-γ Mediate High Glucose-Induced Thioredoxin-Interacting Protein. American Journal of Pathology, 2009, 175, 1858-1867.	3.8	48
30	Transforming growth factor- \hat{l}^2 /connective tissue growth factor axis in the kidney. International Journal of Biochemistry and Cell Biology, 2008, 40, 9-13.	2.8	94
31	The role of Sgk-1 in the upregulation of transport proteins by PPAR-Â agonists in human proximal tubule cells. Nephrology Dialysis Transplantation, 2008, 24, 1130-1141.	0.7	40
32	Role of KrÃ $\frac{1}{4}$ ppel-like factor 6 in transforming growth factor- \hat{l}^21 -induced epithelial-mesenchymal transition of proximal tubule cells. American Journal of Physiology - Renal Physiology, 2008, 295, F1388-F1396.	2.7	76
33	High glucose induces macrophage inflammatory protein-3Â in renal proximal tubule cells via a transforming growth factor-Â1 dependent mechanism. Nephrology Dialysis Transplantation, 2007, 22, 3147-3153.	0.7	34
34	High Glucose-Induced Thioredoxin-Interacting Protein in Renal Proximal Tubule Cells Is Independent of Transforming Growth Factor- \hat{l}^21 . American Journal of Pathology, 2007, 171, 744-754.	3.8	71
35	The differential regulation of Smad7 in kidney tubule cells by connective tissue growth factor and transforming growth factor-beta1. Nephrology, 2007, 12, 267-274.	1.6	16
36	The renal cortical fibroblast in renal tubulointerstitial fibrosis. International Journal of Biochemistry and Cell Biology, 2006, 38, 1-5.	2.8	100

XIN-MING CHEN

#	Article	IF	CITATIONS
37	TGF- \hat{l}^2 (sub>1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. American Journal of Physiology - Renal Physiology, 2006, 290, F703-F709.	2.7	84
38	Transforming growth factor- \hat{l}^21 differentially mediates fibronectin and inflammatory cytokine expression in kidney tubular cells. American Journal of Physiology - Renal Physiology, 2006, 291, F1070-F1077.	2.7	46