
Bruce S Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8718485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of <i>Blastomyces dermatitidis</i> in Soil Associated with a Large Outbreak of Blastomycosis in Wisconsin. New England Journal of Medicine, 1986, 314, 529-534.	13.9	381
2	Global Control of Dimorphism and Virulence in Fungi. Science, 2006, 312, 583-588.	6.0	328
3	Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 2018, 360, .	6.0	278
4	Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. MBio, 2020, 11, .	1.8	275
5	Dimorphism and virulence in fungi. Current Opinion in Microbiology, 2007, 10, 314-319.	2.3	222
6	Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. Journal of Clinical Investigation, 2011, 121, 554-568.	3.9	201
7	Adaptive Immunity to Fungi. Annual Review of Immunology, 2012, 30, 115-148.	9.5	181
8	Vaccine Immunity to Pathogenic Fungi Overcomes the Requirement for CD4 Help in Exogenous Antigen Presentation to CD8+ T Cells. Journal of Experimental Medicine, 2003, 197, 1405-1416.	4.2	174
9	Targeted Gene Disruption Reveals an Adhesin Indispensable for Pathogenicity of Blastomyces dermatitidis. Journal of Experimental Medicine, 1999, 189, 1207-1216.	4.2	144
10	T Cell Receptor Cross-Reactivity between Similar Foreign and Self Peptides Influences Naive Cell Population Size and Autoimmunity. Immunity, 2015, 42, 95-107.	6.6	144
11	Clinical Manifestations and Treatment of Blastomycosis. Clinics in Chest Medicine, 2017, 38, 435-449.	0.8	144
12	Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Reports, 2017, 19, 1008-1021.	2.9	95
13	Tc17 Cells Mediate Vaccine Immunity against Lethal Fungal Pneumonia in Immune Deficient Hosts Lacking CD4+ T Cells. PLoS Pathogens, 2012, 8, e1002771.	2.1	89
14	C-Type Lectin Receptors Differentially Induce Th17 Cells and Vaccine Immunity to the Endemic Mycosis of North America. Journal of Immunology, 2014, 192, 1107-1119.	0.4	88
15	Vaccine Immunity to Coccidioidomycosis Occurs by Early Activation of Three Signal Pathways of T Helper Cell Response (Th1, Th2, and Th17). Infection and Immunity, 2011, 79, 4511-4522.	1.0	87
16	Agrobacterium tumefaciens Integrates Transfer DNA into Single Chromosomal Sites of Dimorphic Fungi and Yields Homokaryotic Progeny from Multinucleate Yeast. Eukaryotic Cell, 2002, 1, 895-905.	3.4	85
17	Adaptive Immunity to Fungi. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019612-a019612.	2.9	85
18	Mutation of the WI-1 gene yields an attenuated Blastomyces dermatitidis strain that induces host resistance. Journal of Clinical Investigation, 2000, 106, 1381-1389.	3.9	83

#	Article	IF	CITATIONS
19	The Eng1 β-Glucanase Enhances <i>Histoplasma</i> Virulence by Reducing β-Glucan Exposure. MBio, 2016, 7, e01388-15.	1.8	76
20	A Large Community Outbreak of Blastomycosis in Wisconsin With Geographic and Ethnic Clustering. Clinical Infectious Diseases, 2013, 57, 655-662.	2.9	73
21	BAD1, an Essential Virulence Factor of <i>Blastomyces dermatitidis</i> , Suppresses Host TNF-α Production Through TGF-β-Dependent and -Independent Mechanisms. Journal of Immunology, 2002, 168, 5746-5755.	0.4	72
22	Development of a Highly Sensitive and Specific Blastomycosis Antibody Enzyme Immunoassay Using Blastomyces dermatitidis Surface Protein BAD-1. Vaccine Journal, 2014, 21, 143-146.	3.2	69
23	SREB, a GATA Transcription Factor That Directs Disparate Fates in Blastomyces dermatitidis Including Morphogenesis and Siderophore Biosynthesis. PLoS Pathogens, 2010, 6, e1000846.	2.1	68
24	The WI-1 Adhesin Blocks Phagocyte TNF-α Production, Imparting Pathogenicity onBlastomyces dermatitidis. Journal of Immunology, 2001, 166, 2665-2673.	0.4	67
25	Requisite Elements in Vaccine Immunity to <i>Blastomyces dermatitidis</i> : Plasticity Uncovers Vaccine Potential in Immune-Deficient Hosts. Journal of Immunology, 2002, 169, 6969-6976.	0.4	63
26	Fungal adaptation to the mammalian host: it is a new world, after all. Current Opinion in Microbiology, 2008, 11, 511-516.	2.3	63
27	Fungi Subvert Vaccine T Cell Priming at the Respiratory Mucosa by Preventing Chemokine-Induced Influx of Inflammatory Monocytes. Immunity, 2012, 36, 680-692.	6.6	62
28	Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection. Cell Host and Microbe, 2018, 23, 511-522.e5.	5.1	62
29	Genomic Cloning, Characterization, and Functional Analysis of the Major Surface Adhesin WI-1 on Blastomyces dermatitidis Yeasts. Journal of Biological Chemistry, 1995, 270, 30725-30732.	1.6	61
30	Exploiting Type 3 Complement Receptor for TNF-α Suppression, Immune Evasion, and Progressive Pulmonary Fungal Infection. Journal of Immunology, 2004, 173, 7444-7453.	0.4	60
31	A C-terminal EGF-like domain governs BAD1 localization to the yeast surface and fungal adherence to phagocytes, but is dispensable in immune modulation and pathogenicity of Blastomyces dermatitidis. Molecular Microbiology, 2003, 48, 53-65.	1.2	59
32	Calnexin Induces Expansion of Antigen-Specific CD4+ T Cells that Confer Immunity to Fungal Ascomycetes via Conserved Epitopes. Cell Host and Microbe, 2015, 17, 452-465.	5.1	58
33	Chitin Elicits CCL2 from Airway Epithelial Cells and Induces CCR2-Dependent Innate Allergic Inflammation in the Lung. Journal of Immunology, 2012, 189, 2545-2552.	0.4	57
34	The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. PLoS Genetics, 2015, 11, e1005493.	1.5	57
35	<i>Fonsecaea pedrosoi</i> â€induced Th17â€cell differentiation in mice is fostered by Dectinâ€2 and suppressed by Mincle recognition. European Journal of Immunology, 2015, 45, 2542-2552.	1.6	57
36	Protective antifungal memory CD8+ T cells are maintained in the absence of CD4+ T cell help and cognate antigen in mice. Journal of Clinical Investigation, 2012, 122, 987-999.	3.9	57

#	Article	IF	CITATIONS
37	CRISPR/Cas9-Mediated Gene Disruption Reveals the Importance of Zinc Metabolism for Fitness of the Dimorphic Fungal Pathogen Blastomyces dermatitidis. MBio, 2018, 9, .	1.8	55
38	Helper T ell responses and pulmonary fungal infections. Immunology, 2018, 155, 155-163.	2.0	53
39	Cell Wall Biogenesis of Blastomyces dermatitidis. Journal of Biological Chemistry, 2000, 275, 7925-7934.	1.6	52
40	An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathogens, 2018, 14, e1007073.	2.1	49
41	Selective expression of the virulence factor BAD1 upon morphogenesis to the pathogenic yeast form of Blastomyces dermatitidis: evidence for transcriptional regulation by a conserved mechanism. Molecular Microbiology, 2001, 39, 875-889.	1.2	48
42	Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathogens, 2019, 15, e1007777.	2.1	48
43	Club Cell TRPV4 Serves as a Damage Sensor Driving Lung Allergic Inflammation. Cell Host and Microbe, 2020, 27, 614-628.e6.	5.1	47
44	Blastomyces dermatitidis Yeast Cells Inhibit Nitric Oxide Production by Alveolar Macrophage Inducible Nitric Oxide Synthase. Infection and Immunity, 2011, 79, 2385-2395.	1.0	45
45	The Interaction of <i>Pneumocystis</i> with the C-Type Lectin Receptor Mincle Exerts a Significant Role in Host Defense against Infection. Journal of Immunology, 2017, 198, 3515-3525.	0.4	45
46	Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Scientific Reports, 2019, 9, 6788.	1.6	45
47	A TCR Transgenic Mouse Reactive with Multiple Systemic Dimorphic Fungi. Journal of Immunology, 2011, 187, 1421-1431.	0.4	43
48	Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food and Chemical Toxicology, 2019, 123, 561-565.	1.8	43
49	Vaccine immunity against fungal infections. Current Opinion in Immunology, 2014, 28, 27-33.	2.4	42
50	Lung epithelium: barrier immunity to inhaled fungi and driver of fungal-associated allergic asthma. Current Opinion in Microbiology, 2017, 40, 8-13.	2.3	42
51	Development of Long-Term Specific Cellular Immunity after Acute Blastomyces dermatitidis Infection: Assessments following a Large Point-Source Outbreak in Wisconsin. Journal of Infectious Diseases, 1990, 161, 97-101.	1.9	41
52	Fungal Mimicry of a Mammalian Aminopeptidase Disables Innate Immunity and Promotes Pathogenicity. Cell Host and Microbe, 2016, 19, 361-374.	5.1	41
53	Immunogenicity and Protective Efficacy of the WI-1 Adhesin of <i>Blastomyces dermatitidis</i> . Infection and Immunity, 1998, 66, 5443-5449.	1.0	41
54	Insights into Fungal Morphogenesis and Immune Evasion. Microbe Magazine, 2008, 3, 416-423.	0.4	39

#	Article	IF	CITATIONS
55	Intrinsic MyD88-Akt1-mTOR Signaling Coordinates Disparate Tc17 and Tc1 Responses during Vaccine Immunity against Fungal Pneumonia. PLoS Pathogens, 2015, 11, e1005161.	2.1	39
56	ldentification of the Mating-Type (<i>MAT</i>) Locus That Controls Sexual Reproduction of Blastomyces dermatitidis. Eukaryotic Cell, 2013, 12, 109-117.	3.4	38
57	Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without plasticity towards IFNÎ ³ cells. PLoS Pathogens, 2017, 13, e1006356.	2.1	36
58	Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Scientific Reports, 2019, 9, 5047.	1.6	36
59	The Unappreciated Intracellular Lifestyle of <i>Blastomyces dermatitidis</i> . Journal of Immunology, 2015, 194, 1796-1805.	0.4	34
60	Interleukin-1 Receptor but Not Toll-Like Receptor 2 Is Essential for MyD88-Dependent Th17 Immunity to Coccidioides Infection. Infection and Immunity, 2014, 82, 2106-2114.	1.0	33
61	Transcription Factor KLF2 in Dendritic Cells Downregulates Th2 Programming via the HIF-1α/Jagged2/Notch Axis. MBio, 2016, 7, .	1.8	32
62	IL-12 Is Required for Induction but Not Maintenance of Protective, Memory Responses toBlastomyces dermatitidis: Implications for Vaccine Development in Immune-Deficient Hosts. Journal of Immunology, 2005, 175, 5288-5297.	0.4	31
63	Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
64	Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLoS ONE, 2017, 12, e0173866.	1.1	31
65	Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay. PLoS ONE, 2012, 7, e36021.	1.1	31
66	Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathogens, 2013, 9, e1003768.	2.1	30
67	Investigation of Genetic Susceptibility to Blastomycosis Reveals Interleukin-6 as a Potential Susceptibility Locus. MBio, 2019, 10, .	1.8	30
68	Structure and Function of a Fungal Adhesin that Binds Heparin and Mimics Thrombospondin-1 by Blocking T Cell Activation and Effector Function. PLoS Pathogens, 2013, 9, e1003464.	2.1	28
69	Dectin-2 Is a C-Type Lectin Receptor that Recognizes <i>Pneumocystis</i> and Participates in Innate Immune Responses. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 232-240.	1.4	27
70	The C-Type Lectin Receptor MCL Mediates Vaccine-Induced Immunity against Infection with Blastomyces dermatitidis. Infection and Immunity, 2016, 84, 635-642.	1.0	26
71	Ligation of Dectin-2 with a novel microbial ligand promotes adjuvant activity for vaccination. PLoS Pathogens, 2017, 13, e1006568.	2.1	26
72	Spleen Tyrosine Kinase Is a Critical Regulator of Neutrophil Responses to <i>Candida</i> Species. MBio, 2020, 11, .	1.8	25

#	Article	IF	CITATIONS
73	Interleukin 1 Enhances Vaccine-Induced Antifungal T-Helper 17 Cells and Resistance Against Blastomyces dermatitidis Infection. Journal of Infectious Diseases, 2013, 208, 1175-1182.	1.9	24
74	Calcium Binding by the Essential Virulence Factor BAD-1 of Blastomyces dermatitidis. Journal of Biological Chemistry, 2005, 280, 42156-42163.	1.6	23
75	Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Frontiers in Cellular and Infection Microbiology, 2020, 10, 69.	1.8	23
76	Vβ1 + Jβ1.1 + /Vα2 + Jα49 + CD4 + T Cells Mediate Resistance against Infection with Blastomyces dermatitidis. Infection and Immunity, 2007, 75, 193-200.	1.0	19
77	Turning on virulence: Mechanisms that underpin the morphologic transition and pathogenicity of <i>Blastomyces</i> . Virulence, 2019, 10, 801-809.	1.8	19
78	CARD9-Associated Dectin-1 and Dectin-2 Are Required for Protective Immunity of a Multivalent Vaccine against <i>Coccidioides posadasii</i> Infection. Journal of Immunology, 2020, 204, 3296-3306.	0.4	19
79	LYSMD3: A mammalian pattern recognition receptor for chitin. Cell Reports, 2021, 36, 109392.	2.9	19
80	Through the Scope Darkly: The Gut Mycobiome Comes into Focus. Cell Host and Microbe, 2017, 22, 728-729.	5.1	18
81	Human iNKT Cells Promote Protective Inflammation by Inducing Oscillating Purinergic Signaling in Monocyte-Derived DCs. Cell Reports, 2016, 16, 3273-3285.	2.9	17
82	LFA-1 Ligation by High-Density ICAM-1 Is Sufficient To Activate IFN-γ Release by Innate T Lymphocytes. Journal of Immunology, 2018, 201, 2452-2461.	0.4	16
83	Sequence Elements Necessary for Transcriptional Activation of BAD1 in the Yeast Phase of Blastomyces dermatitidis. Eukaryotic Cell, 2004, 3, 785-794.	3.4	15
84	Antigen discovery unveils resident memory and migratory cell roles in antifungal resistance. Mucosal Immunology, 2020, 13, 518-529.	2.7	15
85	Purification in Quantity of the Secreted Form of WI-1: A Major Adhesin onBlastomyces dermatitidisYeasts. Protein Expression and Purification, 1997, 11, 219-226.	0.6	13
86	Fungal glycan interactions with epithelial cells in allergic airway disease. Current Opinion in Microbiology, 2013, 16, 404-408.	2.3	12
87	<i>Blastomyces</i> Virulence Adhesin-1 Protein Binding to Glycosaminoglycans Is Enhanced by Protein Disulfide Isomerase. MBio, 2015, 6, e01403-15.	1.8	11
88	Mannose Receptor Is Required for Optimal Induction of Vaccine-Induced T-Helper Type 17 Cells and Resistance to <i>Blastomyces dermatitidis</i> Infection. Journal of Infectious Diseases, 2016, 213, 1762-1766.	1.9	11
89	Early immune response against Fonsecaea pedrosoi requires Dectin-2-mediated Th17 activity, whereas Th1 response, aided by Treg cells, is crucial for fungal clearance in later stage of experimental chromoblastomycosis. PLoS Neglected Tropical Diseases, 2020, 14, e0008386.	1.3	11
90	CBLB Constrains Inactivated Vaccine–Induced CD8+ T Cell Responses and Immunity against Lethal Fungal Pneumonia. Journal of Immunology, 2018, 201, 1717-1726.	0.4	10

#	Article	IF	CITATIONS
91	The effect of canine macrophages on the adherence and growth of Blastomyces dermatitidis yeast: evidence of a soluble factor that enhances the growth of B. dermatitidis yeast. Microbial Pathogenesis, 1999, 27, 395-405.	1.3	9
92	Blastomyces dermatitidisserine protease dipeptidyl peptidase IVA (DppIVA) cleaves ELR+CXC chemokines altering their effects on neutrophils. Cellular Microbiology, 2017, 19, e12741.	1.1	8
93	O-Mannosylation of Proteins Enables <i>Histoplasma</i> Yeast Survival at Mammalian Body Temperatures. MBio, 2018, 9, .	1.8	8
94	Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling. Fungal Genetics and Biology, 2013, 56, 1-8.	0.9	7
95	Structural basis of Blastomyces Endoglucanase-2 adjuvancy in anti-fungal and -viral immunity. PLoS Pathogens, 2021, 17, e1009324.	2.1	7
96	MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathogens, 2016, 12, e1005787.	2.1	7
97	Molecular genetic analysis of Blastomyces dermatitidis reveals new insights about pathogenic mechanisms. International Journal of Medical Microbiology, 2002, 292, 363-371.	1.5	6
98	The Known Unknowns of the Immune Response to Coccidioides. Journal of Fungi (Basel, Switzerland), 2021, 7, 377.	1.5	6
99	The balance between immunity and inflammation. Science, 2017, 357, 973-974.	6.0	5
100	Inhaled <i>Cryptococcus neoformans</i> elicits allergic airway inflammation independent of Nuclear Factor Kappa B signalling in lung epithelial cells. Immunology, 2018, 153, 513-522.	2.0	5
101	Combination Adjuvants Enhance Recombinant Protein Vaccine Protection against Fungal Infection. MBio, 2021, 12, e0201821.	1.8	5
102	Characterization of antifungal Câ€ŧype lectin receptor expression on murine epithelial and endothelial cells in mucosal tissues. European Journal of Immunology, 2021, 51, 2341-2344.	1.6	4
103	Gene Editing in Dimorphic Fungi Using CRISPR/Cas9. Current Protocols in Microbiology, 2020, 59, e132.	6.5	4
104	Variation in Host Resistance to Blastomyces dermatitidis: Potential Use of Genetic Reference Panels and Advances in Immunophenotyping of Diverse Mouse Strains. MBio, 2022, , e0340021.	1.8	2
105	SLAMF1 Is Dispensable for Vaccine-Induced T Cell Development but Required for Resistance to Fungal Infection. Journal of Immunology, 2022, 208, 1417-1423.	0.4	2
106	Blastomyces dermatitidis (Blastomycosis). , 2018, , 1270-1275.e2.		0
107	Fungal Bioreporters to Monitor Outcomes of Aspergillus: Host–Cell Interactions. Methods in Molecular Biology, 2021, 2260, 121-132.	0.4	0
108	Blastomyces and Blastomycosis. , 2021, , 638-653.		0

Blastomyces and Blastomycosis. , 2021, , 638-653. 108

#	Article	IF	CITATIONS
109	Fungal Bioreporters to Monitor Outcomes of Blastomyces: Host–Cell Interactions. Methods in Molecular Biology, 2021, 2260, 111-119.	0.4	0
110	Blastomyces dermatitidis Cell Surface Determinants and Their Application in Vaccine Development. , 0, , 393-406.		0
111	Title is missing!. , 2020, 14, e0008386.		0
112	Title is missing!. , 2020, 14, e0008386.		0
113	Title is missing!. , 2020, 14, e0008386.		0
114	Title is missing!. , 2020, 14, e0008386.		0