
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871839/publications.pdf Version: 2024-02-01

FOWARD L ANTHONY

#	Article	IF	CITATIONS
1	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
2	Carbon capture and storage update. Energy and Environmental Science, 2014, 7, 130-189.	15.6	1,765
3	The calcium looping cycle for large-scale CO2 capture. Progress in Energy and Combustion Science, 2010, 36, 260-279.	15.8	856
4	An overview of advances in biomass gasification. Energy and Environmental Science, 2016, 9, 2939-2977.	15.6	844
5	Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chemical Engineering Journal, 2018, 337, 616-641.	6.6	510
6	Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 2017, 61, 189-248.	15.8	483
7	Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nature Communications, 2020, 11, 1634.	5.8	426
8	Fluidized Bed Combustion Systems Integrating CO2Capture with CaO. Environmental Science & Technology, 2005, 39, 2861-2866.	4.6	383
9	Biomass-based chemical looping technologies: the good, the bad and the future. Energy and Environmental Science, 2017, 10, 1885-1910.	15.6	382
10	Sulfation phenomena in fluidized bed combustion systems. Progress in Energy and Combustion Science, 2001, 27, 215-236.	15.8	371
11	Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews, 2020, 125, 109799.	8.2	369
12	Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO ₂ Capture Looping Cycles. Environmental Science & Technology, 2008, 42, 4170-4174.	4.6	358
13	Capture of CO2 from combustion gases in a fluidized bed of CaO. AICHE Journal, 2004, 50, 1614-1622.	1.8	328
14	Sorbent Cost and Performance in CO2Capture Systems. Industrial & Engineering Chemistry Research, 2004, 43, 3462-3466.	1.8	290
15	Steam Reactivation of Spent CaO-Based Sorbent for Multiple CO2Capture Cycles. Environmental Science & Technology, 2007, 41, 1420-1425.	4.6	286
16	Enhancement of CaO for CO2 capture in an FBC environment. Chemical Engineering Journal, 2003, 96, 187-195.	6.6	257
17	Calcium looping sorbents for CO2 capture. Applied Energy, 2016, 180, 722-742.	5.1	257
18	The effect of CaO sintering on cyclic CO ₂ capture in energy systems. AICHE Journal, 2007, 53, 2432-2442.	1.8	256

#	Article	IF	CITATIONS
19	A review of developments in pilot-plant testing and modelling of calcium looping process for CO ₂ capture from power generation systems. Energy and Environmental Science, 2015, 8, 2199-2249.	15.6	254
20	A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO ₂ . Energy and Environmental Science, 2013, 6, 25-40.	15.6	239
21	Cost Structure of a Postcombustion CO2Capture System Using CaO. Environmental Science & Technology, 2007, 41, 5523-5527.	4.6	227
22	Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor. Industrial & Engineering Chemistry Research, 2004, 43, 5529-5539.	1.8	221
23	Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Progress in Energy and Combustion Science, 1995, 21, 239-268.	15.8	219
24	Carbonation of CaO-Based Sorbents Enhanced by Steam Addition. Industrial & Engineering Chemistry Research, 2010, 49, 9105-9110.	1.8	202
25	Influence of High-Temperature Steam on the Reactivity of CaO Sorbent for CO ₂ Capture. Environmental Science & Technology, 2012, 46, 1262-1269.	4.6	199
26	Determination of intrinsic rate constants of the CaO–CO2 reaction. Chemical Engineering Science, 2008, 63, 47-56.	1.9	189
27	Economics of CO2Capture Using the Calcium Cycle with a Pressurized Fluidized Bed Combustor. Energy & Fuels, 2007, 21, 920-926.	2.5	184
28	Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds. Fuel Processing Technology, 2008, 89, 1386-1395.	3.7	179
29	Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Progress in Energy and Combustion Science, 2013, 39, 515-534.	15.8	179
30	Solid Looping Cycles:  A New Technology for Coal Conversion. Industrial & Engineering Chemistry Research, 2008, 47, 1747-1754.	1.8	175
31	Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles. Fuel, 2009, 88, 1893-1900.	3.4	170
32	CaO-Based Pellets Supported by Calcium Aluminate Cements for High-Temperature CO ₂ Capture. Environmental Science & Technology, 2009, 43, 7117-7122.	4.6	170
33	A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass. Sustainability, 2019, 11, 6204.	1.6	167
34	Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies. Progress in Energy and Combustion Science, 2018, 68, 1-28.	15.8	147
35	Emissions of SO ₂ and NO _{<i>x</i>} during Oxyâ^'Fuel CFB Combustion Tests in a Mini-Circulating Fluidized Bed Combustion Reactor. Energy & Fuels, 2010, 24, 910-915.	2.5	141
36	Removal of CO2by Calcium-Based Sorbents in the Presence of SO2. Energy & Fuels, 2007, 21, 163-170.	2.5	138

#	Article	IF	CITATIONS
37	Long-Term Calcination/Carbonation Cycling and Thermal Pretreatment for CO ₂ Capture by Limestone and Dolomite. Energy & Fuels, 2009, 23, 1437-1444.	2.5	138
38	Advances in carbon capture, utilization and storage. Applied Energy, 2020, 278, 115627.	5.1	135
39	Investigation of Attempts to Improve Cyclic CO ₂ Capture by Sorbent Hydration and Modification. Industrial & Engineering Chemistry Research, 2008, 47, 2024-2032.	1.8	134
40	Clean and efficient use of petroleum coke for combustion and power generation. Fuel, 2004, 83, 1341-1348.	3.4	129
41	On the Decay Behavior of the CO2Absorption Capacity of CaO-Based Sorbents. Industrial & Engineering Chemistry Research, 2005, 44, 627-629.	1.8	129
42	Long-Term Behavior of CaO-Based Pellets Supported by Calcium Aluminate Cements in a Long Series of CO ₂ Capture Cycles. Industrial & Engineering Chemistry Research, 2009, 48, 8906-8912.	1.8	129
43	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
44	Experimental Study of Oxy-Fuel Combustion and Sulfur Capture in a Mini-CFBC. Energy & Fuels, 2007, 21, 3160-3164.	2.5	124
45	High-Purity Hydrogen via the Sorption-Enhanced Steam Methane Reforming Reaction over a Synthetic CaO-Based Sorbent and a Ni Catalyst. Environmental Science & Technology, 2013, 47, 6007-6014.	4.6	119
46	Synthesis of g-C3N4 with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution. Applied Surface Science, 2015, 354, 196-200.	3.1	117
47	Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods. International Journal of Environmental Research and Public Health, 2010, 7, 3129-3140.	1.2	112
48	Enhanced hydrogen production from thermochemical processes. Energy and Environmental Science, 2018, 11, 2647-2672.	15.6	111
49	Experiences and results on a 0.8MWth oxy-fuel operation pilot-scale circulating fluidized bed. Applied Energy, 2012, 92, 343-347.	5.1	109
50	Attrition of Calcining Limestones in Circulating Fluidized-Bed Systems. Industrial & Engineering Chemistry Research, 2007, 46, 5199-5209.	1.8	108
51	A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO ₂ capture. Energy and Environmental Science, 2014, 7, 3291-3295.	15.6	108
52	Screening of Binders for Pelletization of CaO-Based Sorbents for CO ₂ Capture ^{â€} . Energy & Fuels, 2009, 23, 4797-4804.	2.5	105
53	Ag ₂ 0 modified g-C ₃ N ₄ for highly efficient photocatalytic hydrogen generation under visible light irradiation. Journal of Materials Chemistry A, 2015, 3, 15710-15714.	5.2	103
54	Clean combustion of solid fuels. Applied Energy, 2008, 85, 73-79.	5.1	101

4

#	Article	IF	CITATIONS
55	A discrete-pore-size-distribution-based gasâ€"solid model and its application to the <mml:math altimg="si53.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>CaO</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>CO<td>19 mi><td>101 l:mrow>< m</td></td></mml:mi></mml:mrow></mml:msub></mml:math>	19 mi> <td>101 l:mrow>< m</td>	101 l:mrow>< m
56	CO ₂ Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping. Energy & Fuels, 2008, 22, 3258-3264.	2.5	100
57	Design, process simulation and construction of an atmospheric dual fluidized bed combustion system for in situ CO2 capture using high-temperature sorbents. Fuel Processing Technology, 2005, 86, 1523-1531.	3.7	99
58	Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nature Communications, 2018, 9, 1375.	5.8	98
59	Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review. Energy and Environmental Science, 2021, 14, 6122-6157.	15.6	98
60	Ca looping technology: current status, developments and future directions. , 2011, 1, 36-47.		95
61	Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: A review. Fuel Processing Technology, 2020, 199, 106280.	3.7	95
62	Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. ChemSusChem, 2018, 11, 334-355.	3.6	92
63	Reactivation of limestone sorbents in FBC for SO2 capture. Progress in Energy and Combustion Science, 2007, 33, 171-210.	15.8	91
64	Biofuel Production Using Thermochemical Conversion of Heavy Metal-Contaminated Biomass (HMCB) Harvested from Phytoextraction Process. Chemical Engineering Journal, 2019, 358, 759-785.	6.6	91
65	Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent. Fuel, 2008, 87, 1564-1573.	3.4	90
66	Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor. Fuel, 2008, 87, 3344-3352.	3.4	90
67	NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor. Fuel, 2015, 150, 8-13.	3.4	90
68	Durability of CaO–CaZrO ₃ Sorbents for High-Temperature CO ₂ Capture Prepared by a Wet Chemical Method. Energy & Fuels, 2014, 28, 1275-1283.	2.5	89
69	Mesoporous MgO promoted with NaNO3/NaNO2 for rapid and high-capacity CO2 capture at moderate temperatures. Chemical Engineering Journal, 2018, 332, 216-226.	6.6	88
70	Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed. Fuel, 2019, 242, 374-381.	3.4	87
71	Carbonation of fly ash in oxy-fuel CFB combustion. Fuel, 2008, 87, 1108-1114.	3.4	85
72	Effects of impurities on CO2 transport, injection and storage. Energy Procedia, 2011, 4, 3071-3078.	1.8	85

#	Article	IF	CITATIONS
73	Spray Water Reactivation/Pelletization of Spent CaO-based Sorbent from Calcium Looping Cycles. Environmental Science & Technology, 2012, 46, 12720-12725.	4.6	85
74	Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets. Chemical Engineering Journal, 2015, 274, 69-75.	6.6	85
75	CO2 capture performance of calcium-based synthetic sorbent with hollow core-shell structure under calcium looping conditions. Applied Energy, 2018, 225, 402-412.	5.1	84
76	Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles. Energy & Fuels, 2008, 22, 1851-1857.	2.5	83
77	Integration of Calcium and Chemical Looping Combustion using Composite CaO/CuO-Based Materials. Environmental Science & Technology, 2011, 45, 10750-10756.	4.6	82
78	Reactivation and remaking of calcium aluminate pellets for CO2 capture. Fuel, 2011, 90, 233-239.	3.4	81
79	Influence of Steam Injection during Calcination on the Reactivity of CaO-Based Sorbent for Carbon Capture. Industrial & Engineering Chemistry Research, 2013, 52, 2241-2246.	1.8	81
80	Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste. ACS Sustainable Chemistry and Engineering, 2022, 10, 91-103.	3.2	80
81	Characterization of ashes from a 100kWth pilot-scale circulating fluidized bed with oxy-fuel combustion. Applied Energy, 2011, 88, 2940-2948.	5.1	79
82	Microalgae cultivation and metabolites production: a comprehensive review. Biofuels, Bioproducts and Biorefining, 2018, 12, 304-324.	1.9	79
83	CO ₂ Carrying Behavior of Calcium Aluminate Pellets under High-Temperature/High-CO ₂ Concentration Calcination Conditions. Industrial & Engineering Chemistry Research, 2010, 49, 6916-6922.	1.8	78
84	Effect of Pelletization and Addition of Steam on the Cyclic Performance of Carbon-Templated, CaO-Based CO ₂ Sorbents. Environmental Science & Technology, 2014, 48, 5322-5328.	4.6	78
85	SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition. Applied Catalysis B: Environmental, 2011, 101, 522-530.	10.8	76
86	A study of thermal-cracking behavior of asphaltenes. Chemical Engineering Science, 2003, 58, 157-162.	1.9	72
87	Process simulations of blue hydrogen production by upgraded sorption enhanced steam methane reforming (SE-SMR) processes. Energy Conversion and Management, 2020, 222, 113144.	4.4	72
88	CO ₂ Capture from Simulated Syngas via Cyclic Carbonation/Calcination for a Naturally Occurring Limestone: Pilot-Plant Testing. Industrial & Engineering Chemistry Research, 2009, 48, 8431-8440.	1.8	71
89	The Effect of Steam on the Fast Carbonation Reaction Rates of CaO. Industrial & Engineering Chemistry Research, 2012, 51, 2478-2482.	1.8	71
90	Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures. Nanoscale, 2017, 9, 2340-2347.	2.8	71

#	Article	IF	CITATIONS
91	High-temperature CO2 capture cycles for CaO-based pellets with kaolin-based binders. International Journal of Greenhouse Gas Control, 2012, 6, 164-170. <mml:math <="" altimg="si1.gif" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.3</td><td>70</td></mml:math>	2.3	70
92	overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mi mathvariant="normal">CO</mml:mi </mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn>looping cycles with CaO-based sorbent pretreated in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline"</mml:math </mml:mrow></mml:msub></mml:mrow>	:mrow>1.9	nl:msub>
93	overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow>		

#	Article	IF	CITATIONS
109	Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process. Chemical Engineering Journal, 2020, 393, 124716.	6.6	60
110	Mercury removal from coal combustion by Fenton reactions – Part A: Bench-scale tests. Fuel, 2007, 86, 2789-2797.	3.4	59
111	Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam. Energy & Fuels, 2010, 24, 2768-2776.	2.5	59
112	Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles. Fuel Processing Technology, 2013, 116, 284-291.	3.7	59
113	SO2Retention by Reactivated CaO-Based Sorbent from Multiple CO2Capture Cycles. Environmental Science & Technology, 2007, 41, 4435-4440.	4.6	58
114	Parametric Characterization of Air Gasification of <i>Chlorella vulgaris</i> Biomass. Energy & Fuels, 2017, 31, 2959-2969.	2.5	58
115	Steam hydration of CFBC ash and the effect of hydration conditions on reactivation. Fuel, 2004, 83, 1357-1370.	3.4	57
116	Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds. Applied Energy, 2018, 232, 527-542.	5.1	57
117	Mesoporous Nitrogenâ€Doped Carbon Nanospheres as Sulfur Matrix and a Novel Chelateâ€Modified Separator for Highâ€Performance Roomâ€Temperature Naâ€5 Batteries. Small, 2020, 16, e1907464.	5.2	57
118	Porous MgO-stabilized CaO-based powders/pellets via a citric acid-based carbon template for thermochemical energy storage in concentrated solar power plants. Chemical Engineering Journal, 2020, 390, 124163.	6.6	57
119	Novel CaO–SiO ₂ Sorbent and Bifunctional Ni/Co–CaO/SiO ₂ Complex for Selective H ₂ Synthesis from Cellulose. Environmental Science & Technology, 2012, 46, 2976-2983.	4.6	56
120	The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder. Applied Energy, 2012, 92, 415-420.	5.1	56
121	Post-combustion CO2 capture by formic acid-modified CaO-based sorbents. International Journal of Greenhouse Gas Control, 2013, 16, 21-28.	2.3	56
122	A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture. Chemical Engineering Journal, 2016, 291, 298-305.	6.6	56
123	A facile one-pot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO ₂ capture in a combined Ca–Cu looping process <i>via</i> a template-free synthesis approach. Journal of Materials Chemistry A, 2019, 7, 21096-21105.	5.2	56
124	Techno-economic analysis of low-carbon hydrogen production by sorption enhanced steam methane reforming (SE-SMR) processes. Energy Conversion and Management, 2020, 226, 113530.	4.4	56
125	Reactivity of calcium sulfate from FBC systems. Fuel, 1997, 76, 321-327.	3.4	54
126	Sintering and Formation of a Nonporous Carbonate Shell at the Surface of CaO-Based Sorbent Particles during CO ₂ -Capture Cycles. Energy & Fuels, 2010, 24, 5790-5796.	2.5	54

#	Article	IF	CITATIONS
127	Commissioning of a 0.8MWth CFBC for oxy-fuel combustion. International Journal of Greenhouse Gas Control, 2012, 7, 240-243.	2.3	54
128	Carbonation performance of lime for cyclic CO 2 capture following limestone calcination in steam/CO 2 atmosphere. Applied Energy, 2014, 131, 499-507.	5.1	54
129	Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO 2 capture from coal-fired power plant. International Journal of Greenhouse Gas Control, 2015, 42, 226-236.	2.3	53
130	Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming. Energy, 2018, 147, 884-895.	4.5	53
131	Advanced ash management technologies for CFBC ash. Waste Management, 2003, 23, 503-516.	3.7	52
132	CO2 capture from syngas via cyclic carbonation/calcination for a naturally occurring limestone: Modelling and bench-scale testing. Chemical Engineering Science, 2009, 64, 3536-3543.	1.9	52
133	Steam-Enhanced Calcium Looping Cycles with Calcium Aluminate Pellets Doped with Bromides. Industrial & Engineering Chemistry Research, 2013, 52, 7677-7683.	1.8	52
134	Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries. Scientific Reports, 2016, 6, 19317.	1.6	52
135	Experimental study on CO2 capture mechanisms using Na2ZrO3 sorbents synthesized by soft chemistry method. Chemical Engineering Journal, 2017, 313, 646-654.	6.6	52
136	The long term behaviour of CFBC ash–water systems. Waste Management, 2002, 22, 99-111.	3.7	51
137	High CO ₂ Storage Capacity in Alkaliâ€Promoted Hydrotalciteâ€Based Material: In Situ Detection of Reversible Formation of Magnesium Carbonate. Chemistry - A European Journal, 2010, 16, 12694-12700.	1.7	51
138	Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation. Applied Energy, 2016, 163, 41-50.	5.1	51
139	Ruâ€Doping Enhanced Electrocatalysis of Metal–Organic Framework Nanosheets toward Overall Water Splitting. Chemistry - A European Journal, 2020, 26, 17091-17096.	1.7	51
140	Fundamental studies of carbon capture using CaO-based materials. Journal of Materials Chemistry A, 2019, 7, 9977-9987.	5.2	50
141	Hydration of combustion ashes — a chemical and physical study. Fuel, 2001, 80, 773-784.	3.4	49
142	Sequential Capture of CO2and SO2in a Pressurized TGA Simulating FBC Conditions. Environmental Science & Technology, 2007, 41, 2943-2949.	4.6	49
143	Reactivation of CaO-Based Sorbents for CO ₂ Capture: Mechanism for the Carbonation of Ca(OH) ₂ . Industrial & Engineering Chemistry Research, 2011, 50, 10329-10334.	1.8	49
144	Reducing the greenhouse gas footprint of shale gas. Energy Policy, 2011, 39, 8196-8199.	4.2	49

9

#	Article	IF	CITATIONS
145	Enhanced Hydrogen Production from Sawdust Decomposition Using Hybrid-Functional Ni-CaO-Ca ₂ SiO ₄ Materials. Environmental Science & Technology, 2017, 51, 11484-11492.	4.6	49
146	Pilot testing of enhanced sorbents for calcium looping with cement production. Applied Energy, 2018, 225, 392-401.	5.1	48
147	Applying machine learning algorithms in estimating the performance of heterogeneous, multi-component materials as oxygen carriers for chemical-looping processes. Chemical Engineering Journal, 2020, 387, 124072.	6.6	48
148	CFBC ash hydration studies. Fuel, 2005, 84, 1393-1397.	3.4	46
149	The effect of water on the sulphation of limestone. Fuel, 2010, 89, 2628-2632.	3.4	46
150	Flow behaviour of slags from coal and petroleum coke blends. Fuel, 2012, 97, 321-328.	3.4	46
151	Fouling in a 160MWe FBC boiler firing coal and petroleum coke. Fuel, 2001, 80, 1009-1014.	3.4	45
152	Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Processing Technology, 2010, 91, 831-836.	3.7	45
153	Single-crystalline Ni(OH)2nanosheets vertically aligned on a three-dimensional nanoporous metal for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23412-23419.	5.2	45
154	CaO-Based Pellets with Oxygen Carriers and Catalysts. Energy & amp; Fuels, 2011, 25, 4846-4853.	2.5	44
155	Performance of Coal Fly Ash Stabilized, CaO-based Sorbents under Different Carbonation–Calcination Conditions. ACS Sustainable Chemistry and Engineering, 2015, 3, 2092-2099.	3.2	44
156	Sintering and Reactivity of CaCO3-Based Sorbents for In Situ CO2 Capture in Fluidized Beds under Realistic Calcination Conditions. Journal of Environmental Engineering, ASCE, 2009, 135, 404-410.	0.7	43
157	Facile Synthesis of an Ag ₂ O–ZnO Nanohybrid and Its High Photocatalytic Activity. ChemPlusChem, 2012, 77, 931-935.	1.3	43
158	Mesocellular-foam-silica-supported Ni catalyst: Effect of pore size on H2 production from cellulose pyrolysis. International Journal of Hydrogen Energy, 2012, 37, 9590-9601.	3.8	43
159	Agglomeration and strength development of deposits in CFBC boilers firing high-sulfur fuels. Fuel, 2000, 79, 1933-1942.	3.4	42
160	Investigation of Vanadium Compounds in Ashes from a CFBC Firing 100 Petroleum Coke. Energy & Fuels, 2002, 16, 397-403.	2.5	42
161	SO ₂ Retention by CaO-Based Sorbent Spent in CO ₂ Looping Cycles. Industrial & Engineering Chemistry Research, 2009, 48, 6627-6632.	1.8	42
162	Enhancement of Indirect Sulphation of Limestone by Steam Addition. Environmental Science & Technology, 2010, 44, 8781-8786.	4.6	42

#	Article	IF	CITATIONS
163	The effect of impurities in oxyfuel flue gas on CO2 storage capacity. International Journal of Greenhouse Gas Control, 2012, 11, 158-162.	2.3	41
164	Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material. Journal of Materials Chemistry A, 2021, 9, 5740-5750.	5.2	40
165	Pacification of high calcic residues using carbon dioxide. Waste Management, 2000, 20, 1-13.	3.7	39
166	Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles. International Journal of Greenhouse Gas Control, 2013, 17, 357-365.	2.3	39
167	Mechanistic Insights into the Unique Role of Copper in CO ₂ Electroreduction Reactions. ChemSusChem, 2017, 10, 387-393.	3.6	39
168	Kinetic analysis for cyclic CO ₂ capture using lithium orthosilicate sorbents derived from different silicon precursors. Dalton Transactions, 2018, 47, 9038-9050.	1.6	39
169	Nanoporous Au/SnO/Ag heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2014, 2, 7216.	2.7	38
170	Cu(In,Ga)Se ₂ solar cell with 16.7% active-area efficiency achieved by sputtering from a quaternary target. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1774-1778.	0.8	38
171	A green and scalable synthesis of highly stable Ca-based sorbents for CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 7966-7973.	5.2	38
172	Recent advances on kinetics of carbon dioxide capture using solid sorbents at elevated temperatures. Applied Energy, 2020, 267, 114874.	5.1	38
173	Sulphation and carbonation properties of hydrated sorbents from a fluidized bed CO2 looping cycle reactor. Fuel, 2008, 87, 2923-2931.	3.4	37
174	Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Research, 2019, 42, 101601.	2.4	37
175	Structural and kinetic analysis of CO2 sorption on NaNO2-promoted MgO at moderate temperatures. Chemical Engineering Journal, 2019, 372, 886-895.	6.6	37
176	Direct capture of carbon dioxide from air via lime-based sorbents. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 25-41.	1.0	37
177	Effect of SO ₂ and steam on CO ₂ capture performance of biomass-templated calcium aluminate pellets. Faraday Discussions, 2016, 192, 97-111.	1.6	36
178	Effect of co-firing coal and biomass blends on the gaseous environments and ash deposition during pilot-scale oxy-combustion trials. Fuel, 2017, 197, 145-158.	3.4	36
179	Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition. International Journal of Multiphase Flow, 2018, 108, 1-10.	1.6	36
180	Simultaneous removal of SO2 and NOx by a new combined spray-and-scattered-bubble technology based on preozonation: From lab scale to pilot scale. Applied Energy, 2019, 242, 1528-1538.	5.1	36

#	Article	IF	CITATIONS
181	Agglomeration and Fouling in Three Industrial Petroleum Coke-Fired CFBC Boilers Due to Carbonation and Sulfation. Energy & amp; Fuels, 2000, 14, 1021-1027.	2.5	35
182	The effect of steam addition to the calciner in a calcium looping pilot plant. Powder Technology, 2016, 290, 114-123.	2.1	35
183	Gasification of biomass with CO2 and H2O mixtures in a catalytic fluidised bed. Fuel, 2017, 210, 605-610.	3.4	35
184	Synthesis of highly effective stabilized CaO sorbents <i>via</i> a sacrificial N-doped carbon nanosheet template. Journal of Materials Chemistry A, 2019, 7, 9173-9182.	5.2	35
185	Enhancing hydrogen production from biomass pyrolysis by dental-wastes-derived sodium zirconate. International Journal of Hydrogen Energy, 2019, 44, 23846-23855.	3.8	34
186	Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 2020, 148, 168-175.	4.3	34
187	Reuse of landfilled FBC residues. Fuel, 1997, 76, 603-606.	3.4	33
188	An examination of the exothermic nature of fluidized bed combustion (FBC) residues. Waste Management, 1999, 19, 293-305.	3.7	33
189	Dioxin and Furan Formation in FBC Boilers. Environmental Science & Technology, 2001, 35, 3002-3007.	4.6	33
190	Oxidation of sulfided limestone under the conditions of pressurized fluidized bed combustion. Fuel, 2001, 80, 549-558.	3.4	33
191	Mercury removal from coal combustion by Fenton reactions. Paper B: Pilot-scale tests. Fuel, 2007, 86, 2798-2805.	3.4	33
192	CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents. Applied Energy, 2015, 140, 297-303.	5.1	33
193	CO ₂ Capture Performance Using Biomass-Templated Cement-Supported Limestone Pellets. Industrial & Engineering Chemistry Research, 2016, 55, 10294-10300.	1.8	33
194	CO2 capture by calcium aluminate pellets in a small fluidized bed. Fuel Processing Technology, 2016, 142, 100-106.	3.7	33
195	Recycling waste-derived marble powder for CO2 capture. Chemical Engineering Research and Design, 2019, 132, 214-225.	2.7	33
196	Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres. Fuel Processing Technology, 2019, 186, 8-17.	3.7	33
197	A calcium looping process for simultaneous CO2 capture and peak shaving in a coal-fired power plant. Applied Energy, 2019, 235, 480-486.	5.1	33
198	Study of coal and coke ignition in fluidized beds. Fuel, 2006, 85, 635-642.	3.4	32

#	Article	IF	CITATIONS
199	Emissions from co-firing lignite and biomass in an oxy-fired CFBC. Fuel Processing Technology, 2018, 173, 126-133.	3.7	32
200	The Hydration Behavior of Partially Sulfated Fluidized Bed Combustor Sorbent. Industrial & Engineering Chemistry Research, 2005, 44, 8199-8204.	1.8	31
201	Experimental study of a single char particle combustion characteristics in a fluidized bed under O2/H2O condition. Chemical Engineering Journal, 2020, 382, 122942.	6.6	31
202	Characterization of solid char produced from pyrolysis of the organic fraction of municipal solid waste, high volatile coal and their blends. Energy, 2020, 191, 116562.	4.5	31
203	Carbonation of FBC ash by sonochemical treatment. Fuel, 2007, 86, 2603-2615.	3.4	30
204	Model for Self-Reactivation of Highly Sintered CaO Particles during CO ₂ Capture Looping Cycles. Energy & Fuels, 2011, 25, 1926-1930.	2.5	30
205	Partitioning of trace elements, As, Ba, Cd, Cr, Cu, Mn and Pb, in a 2.5 MWth pilot-scale circulating fluidised bed combustor burning an anthracite and a bituminous coal. Fuel Processing Technology, 2016, 146, 1-8.	3.7	30
206	Sprayâ€Dried Sodium Zirconate: A Rapid Absorption Powder for CO ₂ Capture with Enhanced Cyclic Stability. ChemSusChem, 2017, 10, 2059-2067.	3.6	30
207	Suppressed Shuttle via Inhibiting the Formation of Longâ€Chain Lithium Polysulfides and Functional Separator for Greatly Improved Lithium–Organosulfur Batteries Performance. Advanced Energy Materials, 2020, 10, 1902695.	10.2	30
208	Catalysts of Ordered Mesoporous Alumina with a Large Pore Size for Low-Temperature Hydrolysis of Carbonyl Sulfide. Energy & Fuels, 2021, 35, 8895-8908.	2.5	30
209	The effect of halides on emissions from circulating fluidized bed combustion of fossil fuels. Fuel, 1996, 75, 1655-1663.	3.4	29
210	The NO and N ₂ O formation mechanism under circulating fluidized bed combustor conditions: From the single particle to the pilotâ€scale. Canadian Journal of Chemical Engineering, 1999, 77, 275-283.	0.9	29
211	Na ₂ ZrO ₃ as an Effective Bifunctional Catalyst–Sorbent during Cellulose Pyrolysis. Industrial & Engineering Chemistry Research, 2017, 56, 3223-3230.	1.8	29
212	Sulfur trioxide formation/emissions in coalâ€fired air―and oxyâ€fuel combustion processes: a review. , 2018, 8, 402-428.		29
213	The effect of H2O on formation mechanism of arsenic oxide during arsenopyrite oxidation: Experimental and theoretical analysis. Chemical Engineering Journal, 2020, 392, 123648.	6.6	29
214	The Phase Analysis of Coal Combustion Ashes. Journal of Energy Resources Technology, Transactions of the ASME, 1994, 116, 278-286.	1.4	28
215	Effect of Partial Carbonation on the Cyclic CaO Carbonation Reaction. Industrial & Engineering Chemistry Research, 2009, 48, 9090-9096.	1.8	28
216	Metal-oxide stabilized CaO/CuO composites for the integrated Ca/Cu looping process. Chemical Engineering Journal, 2021, 403, 126330.	6.6	28

#	Article	IF	CITATIONS
217	Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel Processing Technology, 2017, 166, 107-114.	3.7	27
218	Process and Economic Evaluation of an Onboard Capture System for LNG-Fueled CO ₂ Carriers. Industrial & Engineering Chemistry Research, 2020, 59, 6951-6960.	1.8	27
219	Pilot plant investigations of thermal remediation of tar-contaminated soil and oil-contaminated gravel. Fuel, 2006, 85, 443-450.	3.4	26
220	Steam hydration–reactivation of FBC ashes for enhanced in situ desulphurization. Fuel, 2009, 88, 1092-1098.	3.4	26
221	Equilibrium Modeling of Sorption-Enhanced Cogasification of Sewage Sludge and Wood for Hydrogen-Rich Gas Production with <i>in Situ</i> Carbon Dioxide Capture. Industrial & Engineering Chemistry Research, 2017, 56, 5993-6001.	1.8	26
222	Demonstration of Polymorphic Spacing Strategy against Sintering: Synthesis of Stabilized Calcium Looping Absorbents for High-Temperature CO ₂ Sorption. Energy & Fuels, 2018, 32, 5443-5452.	2.5	26
223	A New Mechanism for FBC Agglomeration and Fouling in 100 Percent Firing of Petroleum Coke. Journal of Energy Resources Technology, Transactions of the ASME, 1997, 119, 55-61.	1.4	25
224	Changes in Limestone Sorbent Morphology during CaO-CaCO3Looping at Pilot Scale. Chemical Engineering and Technology, 2009, 32, 425-434.	0.9	25
225	SO3 formation under oxy-CFB combustion conditions. International Journal of Greenhouse Gas Control, 2015, 43, 172-178.	2.3	25
226	Investigating the Use of CaO/CuO Sorbents for in Situ CO ₂ Capture in a Biomass Gasifier. Energy & Fuels, 2015, 29, 3808-3819.	2.5	25
227	Ash deposition during pressurized oxy-fuel combustion of Zhundong coal in a lab-scale fluidized bed. Fuel Processing Technology, 2020, 204, 106411.	3.7	25
228	Particulate matter formation mechanism during pressurized air-and oxy-coal combustion in a 10kWth fluidized bed. Fuel Processing Technology, 2022, 225, 107064.	3.7	25
229	Pacification of FBC ash in a pressurized TGA. Fuel, 2000, 79, 1109-1114.	3.4	24
230	Influence of Water Vapor on the Direct Sulfation of Limestone under Simulated Oxy-fuel Fluidized-Bed Combustion (FBC) Conditions. Energy & Fuels, 2011, 25, 617-623.	2.5	24
231	Combined Calcium Looping and Chemical Looping Combustion for Postâ€Combustion Carbon Dioxide Capture: Process Simulation and Sensitivity Analysis. Energy Technology, 2016, 4, 1158-1170.	1.8	24
232	SO3 formation and the effect of fly ash in a bubbling fluidised bed under oxy-fuel combustion conditions. Fuel Processing Technology, 2017, 167, 314-321.	3.7	24
233	Migration and emission of mercury from circulating fluidized bed boilers co-firing petroleum coke and coal. Fuel, 2018, 215, 638-646.	3.4	24
234	Agglomeration and Fouling in Petroleum Coke-Fired FBC Boilers. Journal of Energy Resources Technology, Transactions of the ASME, 1998, 120, 285-292.	1.4	23

#	Article	IF	CITATIONS
235	CaS Oxidation by Reaction with CO2and H2O. Energy & Fuels, 2003, 17, 363-368.	2.5	23
236	Review of the scientific evidence to support environmental risk assessment of shale gas development in the UK. Science of the Total Environment, 2016, 563-564, 731-740.	3.9	23
237	Zirconia incorporated calcium looping absorbents with superior sintering resistance for carbon dioxide capture from <i>in situ</i> or <i>ex situ</i> processes. Sustainable Energy and Fuels, 2018, 2, 2733-2741.	2.5	23
238	Co-capture of H2S and CO2in a Pressurized-Gasifier-Based Process. Energy & Fuels, 2007, 21, 836-844.	2.5	22
239	Simulation of entrained flow coal gasification. Energy Procedia, 2009, 1, 503-509.	1.8	22
240	Oxidation of Mercury under Ultraviolet (UV) Irradiation. Energy & Fuels, 2010, 24, 4351-4356.	2.5	22
241	Degradation study of a novel polymorphic sorbent under realistic post-combustion conditions. Fuel, 2016, 186, 708-713.	3.4	22
242	Effects of Drying Methods on Wet Chemistry Synthesis of Al-Stabilized CaO Sorbents for Cyclic CO ₂ Capture. Energy & Fuels, 2017, 31, 12521-12529.	2.5	22
243	Biomass Gasification. , 2017, , 205-216.		22
244	CO2/SO2 emission reduction in CO2 shipping infrastructure. International Journal of Greenhouse Gas Control, 2019, 88, 57-70.	2.3	22
245	Enhanced reversible capability of a macroporous ZnMn ₂ O ₄ /C microsphere anode with a water-soluble binder for long-life and high-rate lithium-ion storage. Inorganic Chemistry Frontiers, 2019, 6, 1535-1545.	3.0	22
246	Strength development due to long term sulfation and carbonation/sulfation phenomena. Canadian Journal of Chemical Engineering, 2001, 79, 356-366.	0.9	21
247	Attrition Study of Cement-Supported Biomass-Activated Calcium Sorbents for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 9476-9484.	1.8	21
248	The kinetics and pore structure of sorbents during the simultaneous calcination/sulfation of limestone in CFB. Fuel, 2017, 208, 203-213.	3.4	21
249	Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration. Science of the Total Environment, 2021, 780, 146336.	3.9	21
250	The Enhancement of Hydration of Fluidized Bed Combustion Ash by Sonication. Environmental Science & Technology, 2002, 36, 4447-4453.	4.6	20
251	Steam reactivation of 16 bed and fly ashes from industrial-scale coal-fired fluidized bed combustors. Fuel, 2006, 85, 94-106.	3.4	20
252	Experimental Studies on Hydration of Partially Sulphated CFBC Ash. Canadian Journal of Chemical Engineering, 2003, 81, 1200-1214.	0.9	20

#	Article	IF	CITATIONS
253	Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture. Fuel, 2014, 117, 1288-1297.	3.4	20
254	Advanced Fluidized Bed Combustion Sorbent Reactivation Technology. Industrial & Engineering Chemistry Research, 2003, 42, 1162-1173.	1.8	19
255	In-Situ Capture of CO2 in a Fluidized Bed Combustor. , 2003, , 133.		19
256	Oxy-combustion Studies Into the Co –Firing of Coal and Biomass Blends: Effects on Heat Transfer, Gas and Ash Compositions. Energy Procedia, 2014, 63, 440-452.	1.8	19
257	Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549, 649-659.	4.1	19
258	Improvement of CaO-based sorbent performance for CO2 looping cycles. Thermal Science, 2009, 13, 89-104.	0.5	19
259	Mechanisms of Bed Material Agglomeration in a Petroleum Coke-Fired Circulating Fluidized Bed Boiler. Journal of Energy Resources Technology, Transactions of the ASME, 1998, 120, 215-218.	1.4	18
260	Sulfation Performance of CaO-Based Pellets Supported by Calcium Aluminate Cements Designed for High-Temperature CO ₂ Capture. Energy & Fuels, 2010, 24, 1414-1420.	2.5	18
261	Effect of pressure and gas concentration on CO2 and SO2 capture performance of limestones. Fuel, 2014, 122, 236-246.	3.4	18
262	A two-stages relay selection and resource allocation joint method for d2d communication system. , 2016, , .		18
263	Effect of steam hydration on reactivity and strength of cementâ€supported calcium sorbents for CO ₂ capture. , 2017, 7, 915-926.		18
264	Long-term mineral transformation of Ca-rich oil shale ash waste. Science of the Total Environment, 2019, 658, 1404-1415.	3.9	18
265	A kinetic study on lignite char gasification with CO2 and H2O in a fluidized bed reactor. Applied Thermal Engineering, 2019, 147, 602-609.	3.0	18
266	Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification. Algal Research, 2020, 52, 102102.	2.4	18
267	A scanning electron microscope study on agglomeration in petroleum coke-fired FBC boilers. Fuel Processing Technology, 2003, 82, 27-50.	3.7	17
268	Progress of Sulfation in Highly Sulfated Particles of Lime. Industrial & Engineering Chemistry Research, 2003, 42, 1840-1844.	1.8	17
269	A Study on the Reactivation of Five Fly Ashes from Commercial Circulating Fluidized Bed (CFB) Boilers. Energy & Fuels, 2004, 18, 830-834.	2.5	17
270	Combustion of poultry-derived fuel in a coal-fired pilot-scale circulating fluidized bed combustor. Fuel Processing Technology, 2011, 92, 2138-2144.	3.7	17

#	Article	IF	CITATIONS
271	Cyclic Oxygen Release Characteristics of Bifunctional Copper Oxide/Calcium Oxide Composites. Energy Technology, 2016, 4, 1171-1178.	1.8	17
272	Sorption-enhanced propane partial oxidation hydrogen production for solid oxide fuel cell (SOFC) applications. Energy, 2022, 247, 123463.	4.5	17
273	Study of Hydration During Curing of Residues From Coal Combustion With Limestone Addition. Journal of Energy Resources Technology, Transactions of the ASME, 1997, 119, 89-95.	1.4	16
274	Fate of inorganic matter in entrained-flow slagging gasifiers: Pilot plant testing. Fuel Processing Technology, 2014, 125, 18-33.	3.7	16
275	Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211). Electrocatalysis, 2017, 8, 647-656.	1.5	16
276	Sorption of CO2 on NaBr co-doped Li4SiO4 ceramics: Structural and kinetic analysis. Fuel Processing Technology, 2019, 195, 106143.	3.7	16
277	CO ₂ Capture Performance of Gluconic Acid Modified Limestone-Dolomite Mixtures under Realistic Conditions. Energy & Fuels, 2019, 33, 7550-7560.	2.5	16
278	Entrained-flow gasifier fuel blending studies at pilot scale. Canadian Journal of Chemical Engineering, 2008, 86, 335-346.	0.9	15
279	Size Effect on Thermal Properties in Low-Dimensional Materials. Key Engineering Materials, 2010, 444, 189-218.	0.4	15
280	Fugitive halocarbon emissions from working face of municipal solid waste landfills in China. Waste Management, 2017, 70, 149-157.	3.7	15
281	The characterization of solid residues from PFBC boilers. Canadian Journal of Chemical Engineering, 1997, 75, 1115-1121.	0.9	14
282	Reactivation of fluidised bed combustor ash for sulphur capture. Chemical Engineering Journal, 2003, 94, 147-154.	6.6	14
283	Reinvestigation of hydration/reactivation characteristics of two long-term sulphated limestones which previously showed uniformly sulphating behaviour. Fuel, 2006, 85, 2213-2219.	3.4	14
284	Interactions of vanadium-rich slags with crucible materials during viscosity measurements. Journal of Materials Science, 2013, 48, 1053-1066.	1.7	14
285	The morphology of limestone-based pellets prepared with kaolin-based binders. Materials Chemistry and Physics, 2013, 138, 78-85.	2.0	14
286	Oxyfuel CFBC: status and anticipated development. , 2013, 3, 116-123.		14
287	EKF-Based Joint Channel Estimation and Decoding Design for Non-Stationary OFDM Channel. , 2017, , .		14
288	Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China. Hydrogeology Journal, 2018, 26, 1693-1704.	0.9	14

#	Article	IF	CITATIONS
289	Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China. Hydrogeology Journal, 2019, 27, 2707-2718.	0.9	14
290	The effect of CO on the transformation of arsenic species: A quantum chemistry study. Energy, 2019, 187, 116024.	4.5	14
291	Sulfur Enrichment in Particulate Matter Generated from a Lab-Scale Pressurized Fluidized Bed Combustor. Energy & Fuels, 2019, 33, 603-611.	2.5	14
292	The simultaneous calcination/sulfation reaction of limestone under oxy-fuel CFB conditions. Fuel, 2019, 237, 812-822.	3.4	14
293	High CO2 absorption in new amine based-transition-temperature mixtures (deep eutectic analogues) and reporting thermal stability, viscosity and surface tension: Response surface methodology (RSM). Journal of Molecular Liquids, 2020, 316, 113863.	2.3	14
294	Preparation and Characterisation of Activated Carbon from Palm Mixed Waste Treated with Trona Ore. Molecules, 2020, 25, 5028.	1.7	14
295	Catalytic Fast Pyrolysis of Sewage Sludge over HZSM-5: A Study of Light Aromatics, Coke, and Nitrogen Migration under Different Atmospheres. Industrial & Engineering Chemistry Research, 2020, 59, 17537-17545.	1.8	14
296	Molten shell-activated, high-performance, un-doped Li4SiO4 for high-temperature CO2 capture at low CO2 concentrations. Chemical Engineering Journal, 2021, 408, 127353.	6.6	14
297	The role of H2O in structural nitrogen migration during coal devolatilization under oxy-steam combustion conditions. Fuel Processing Technology, 2022, 225, 107040.	3.7	14
298	Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping. Thermal Science, 2016, 20, 59-67.	0.5	14
299	The role of H2O in NO formation and reduction during oxy-steam combustion of bituminous coal char. Combustion and Flame, 2022, 237, 111883.	2.8	14
300	Characterization of Solid Wastes From Circulating Fluidized Bed Combustion. Journal of Energy Resources Technology, Transactions of the ASME, 1995, 117, 18-23.	1.4	13
301	An Analysis of the Reaction Rate for Mercury Vapor and Chlorine. Chemical Engineering and Technology, 2005, 28, 569-573.	0.9	13
302	Assessment of Sorbent Reactivation by Water Hydration for Fluidized Bed Combustion Application. Journal of Energy Resources Technology, Transactions of the ASME, 2006, 128, 90-98.	1.4	13
303	Different effects of water molecules on CO oxidation with different reaction mechanisms. Physical Chemistry Chemical Physics, 2018, 20, 8341-8348.	1.3	13
304	Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine. Energies, 2019, 12, 72.	1.6	13
305	The use of venting formulae in the design and protection of building and industrial plant from damage by gas or vapour explosions. Journal of Hazardous Materials, 1977, 2, 23-49.	6.5	12
306	The Safety of Hot Self-Heating Materials. Combustion Science and Technology, 1979, 21, 79-85.	1.2	12

#	Article	IF	CITATIONS
307	Understanding of Halogen Impacts in Fluidized Bed Combustion. Energy & Fuels, 2001, 15, 533-540.	2.5	12
308	Industrial-scale demonstration of a new sorbent reactivation technology for fluidized bed combustors. Journal of Environmental Management, 2003, 69, 177-185.	3.8	12
309	Sonochemical treatment of FBC ash: A study of the reaction mechanism and performance of synthetic sorbents. Fuel, 2008, 87, 1927-1933.	3.4	12
310	CO oxidation and the inhibition effects of halogen species in fluidised bed combustion. Combustion Theory and Modelling, 2009, 13, 105-119.	1.0	12
311	Agglomeration of Sorbent Particles during Sulfation of Lime in the Presence of Steam. Energy & Fuels, 2010, 24, 6442-6448.	2.5	12
312	Probabilistic performance assessment of complex energy process systems – The case of a self-sustained sanitation system. Energy Conversion and Management, 2018, 163, 74-85.	4.4	12
313	Design, process simulation and construction of a 100ÅkW pilot-scale CO2 membrane rig: Improving in situ CO2 capture using selective exhaust gas recirculation (S-EGR). Journal of Natural Gas Science and Engineering, 2018, 50, 128-138.	2.1	12
314	Alkaline Thermal Treatment of Cellulosic Biomass for H ₂ Production Using Ca-Based Bifunctional Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 1202-1209.	3.2	12
315	Vaporization model of arsenic during single-particle coal combustion: Numerical simulation. Fuel, 2021, 287, 119412.	3.4	12
316	The Uses and Morphology of Atmospheric Fluidized Bed Combustion Wastes From Canada's First Industrial AFBC Boilers. Journal of Energy Resources Technology, Transactions of the ASME, 1987, 109, 148-154.	1.4	11
317	LIFAC ash – strategies for management. Waste Management, 2005, 25, 265-279.	3.7	11
318	A COMMON DECAY BEHAVIOR IN CYCLIC PROCESSES. Chemical Engineering Communications, 2007, 194, 1409-1420.	1.5	11
319	Fouling in a utility-scale CFBC boiler firing 100% petroleum coke. Fuel Processing Technology, 2007, 88, 535-547.	3.7	11
320	Investigation of sulphation behavior of two fly ash samples produced from combustion of different fuels in a 165 MWe CFB boiler. Powder Technology, 2011, 208, 237-241.	2.1	11
321	Fate of inorganic matter in entrained-flow slagging gasifiers: Fuel characterization. Fuel Processing Technology, 2014, 118, 208-217.	3.7	11
322	Pressurised calcination–atmospheric carbonation of limestone for cyclic CO2 capture from flue gases. Chemical Engineering Research and Design, 2015, 102, 116-123.	2.7	11
323	Copper-based oxygen carriers supported with alumina/lime for the chemical looping conversion of gaseous fuels. Journal of Energy Chemistry, 2017, 26, 891-901.	7.1	11
324	The combined effect of H ₂ O and SO ₂ on the simultaneous calcination/sulfation reaction in CFBs. AICHE Journal, 2019, 65, 1256-1268.	1.8	11

#	Article	IF	CITATIONS
325	Hollow N-doped carbon nanofibers provide superior potassium-storage performance. Nanoscale Advances, 2020, 2, 4187-4198.	2.2	11
326	Dihydromethysticin, a natural molecule from Kava, suppresses the growth of colorectal cancer via the NLRC3/PI3K pathway. Molecular Carcinogenesis, 2020, 59, 575-589.	1.3	11
327	Sulfation of limestone under O2/H2O combustion conditions in circulating fluidized bed. International Journal of Greenhouse Gas Control, 2020, 95, 102979.	2.3	11
328	Hybrid-functional material for sorption-enhanced hydrogen-rich syngas production from biomass: Effect of material preparation process. Biomass and Bioenergy, 2021, 144, 105886.	2.9	11
329	A theoretical exploration of the effect and mechanism of CO on NO2 heterogeneous reduction over carbonaceous surfaces. Fuel, 2021, 290, 120102.	3.4	11
330	Use of a rotating single probe in studies of ionization of additives to premixed flames. Part 5.—Recombination of metal ions with electrons. Journal of the Chemical Society Faraday Transactions I, 1974, 70, 1067.	1.0	10
331	Relationship between SO2 and other pollutant emissions from fluidized-bed combustion. Proceedings of the Combustion Institute, 1998, 27, 3093-3101.	0.3	10
332	A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology. Journal of Environmental Management, 2007, 84, 299-304.	3.8	10
333	Carbonation of Magnesium Silicate Minerals: An Experimental Study. Canadian Journal of Chemical Engineering, 2008, 82, 1289-1295.	0.9	10
334	High thermal stability of core–shell structures dominated by negative interface energy. Physical Chemistry Chemical Physics, 2017, 19, 9253-9260.	1.3	10
335	Investigation of the apparent kinetics of air and oxy-fuel biomass combustion in a spout fluidised-bed reactor. Chemical Engineering Research and Design, 2020, 153, 276-283.	2.7	10
336	Municipal solid waste management and greenhouse gas emissions at international airports: A case study of Astana International Airport. Journal of Air Transport Management, 2020, 85, 101789.	2.4	10
337	Highâ€performance N, Pâ€CNL nanocomposites as catalyst for oxygen reduction reaction in fuel cell. International Journal of Energy Research, 2020, 44, 4851-4860.	2.2	10
338	The extent of sorbent attrition and degradation of ethanol-treated CaO sorbents for CO2 capture within a fluidised bed reactor. Fuel Processing Technology, 2018, 171, 198-204.	3.7	9
339	Effects of the Inert Materials on the Stability of Ca-Based CO ₂ Sorbents and the Synergy with Cement Manufacture. Energy & Fuels, 2019, 33, 9996-10003.	2.5	9
340	Vaporization model for arsenic during single-particle coal combustion: Model development. Combustion and Flame, 2019, 205, 534-546.	2.8	9
341	Movement and combustion characteristics of densified rice hull pellets in a fluidized bed combustor at elevated pressures. Fuel, 2021, 294, 120421.	3.4	9
342	Efficient Electrocatalytic Nitrogen Reduction to Ammonia on Ultrafine Sn Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 59834-59842.	4.0	9

#	Article	IF	CITATIONS
343	CO ₂ capture and attrition performance of competitive ecoâ€friendly calciumâ€based pellets in fluidized bed. , 2018, 8, 1124-1133.		8
344	Cobaltic Coreâ€Carbon Shell Nanoparticles/Nâ€Doped Graphene Composites as Efficient Electrocatalyst for Oxygen Reduction Reaction. Energy Technology, 2018, 6, 2282-2288.	1.8	8
345	Modelling the simultaneous calcination/sulfation behavior of limestone under circulating fluidized bed combustion conditions. Fuel, 2019, 257, 116072.	3.4	8
346	Effect of H2O on the volatilization characteristics of arsenic during isothermal O2/CO2 combustion. International Journal of Greenhouse Gas Control, 2019, 83, 228-235.	2.3	8
347	The effect of HCl and steam on cyclic CO2 capture performance in calcium looping systems. Chemical Engineering Science, 2021, 242, 113762.	1.9	8
348	Bed-to-tube heat transfer characteristics with an immersed horizontal tube in the pressurized fluidized bed at high temperature. International Communications in Heat and Mass Transfer, 2021, 124, 105270.	2.9	8
349	Some aspects of unconfined gas and vapour cloud explosions. Journal of Hazardous Materials, 1975, 1, 289-301.	6.5	7
350	Agglomeration Behavior of Dolomitic Sorbents during Long-Term Sulfation. Energy & Fuels, 2003, 17, 348-353.	2.5	7
351	Reactivation Properties of Four Long-Term Sulfated Limestones. Energy & amp; Fuels, 2006, 20, 2421-2425.	2.5	7
352	Calcium sulphide in FBC boilers and its fate using liquid water reactivation. Fuel, 2006, 85, 1871-1879.	3.4	7
353	Reuse of Spent Sorbents from FBC for SO ₂ Capture by Simultaneous Reactivation and Pelletization. Energy & Fuels, 2013, 27, 82-86.	2.5	7
354	High-Pressure Oxy-Firing (HiPrOx) of Fuels with Water for the Purpose of Direct Contact Steam Generation. Energy & Fuels, 2015, 29, 4522-4533.	2.5	7
355	Partition Behavior of Drug Molecules in Cholinium-Based Ionic Liquids. Separation Science and Technology, 2015, 50, 1641-1646.	1.3	7
356	A Hydrodynamic Study of a Fastâ€Bed Dual Circulating Fluidized Bed for Chemical Looping Combustion. Energy Technology, 2016, 4, 1254-1262.	1.8	7
357	Effects of Ionic Liquid-Assisted Pretreatment of Heavy Metal-Contaminated Biomass on the Yield and Composition of Syngas Production Using Noncatalytic and Catalytic Pyrolysis and Gasification Processes. ACS Sustainable Chemistry and Engineering, 2019, 7, 18303-18312.	3.2	7
358	Alkaline pyrolysis of anaerobic digestion residue with selective hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 20933-20943.	3.8	7
359	Formation and Reduction of NO ₂ in Fixed Bed Combustion of Coal Char under Oxy–Fuel Conditions: Experimental and Density Functional Theory Analysis. Energy & Fuels, 2020, 34, 6326-6337.	2.5	7
360	The Gas Interchange between Bubble and Emulsion Phases in a Pressurized Fluidized Bed by Computational Fluid Dynamics Simulations. Industrial & Engineering Chemistry Research, 2021, 60, 4142-4152.	1.8	7

#	Article	IF	CITATIONS
361	Attrition of high ash Ekibastuz coal in a bench scale fluidized bed rig under O2/N2 and O2/CO2 environments. Fuel Processing Technology, 2021, 216, 106775.	3.7	7
362	Pressurized combustion in FBC systems. , 1995, , 80-120.		7
363	The combined effect of SO2 and H2O on CO2 capture performance by calcium looping. Journal of CO2 Utilization, 2021, 54, 101798.	3.3	7
364	Simultaneous hydration/carbonation of FBC ash by low-frequency sonication. Chemical Engineering and Processing: Process Intensification, 2008, 47, 9-16.	1.8	6
365	Understanding dense phase CO2 corrosion problems. Energy Procedia, 2014, 63, 2493-2499.	1.8	6
366	Fragmentation of biomass-templated CaO-based pellets. Fuel, 2017, 187, 388-397.	3.4	6
367	Evolution of Water Structures on Stepped Platinum Surfaces. Journal of Physical Chemistry C, 2018, 122, 604-611.	1.5	6
368	Effects of non-isothermal flow on groundwater recharge in a semi-arid region. Hydrogeology Journal, 2021, 29, 541-549.	0.9	6
369	Mineral and Heavy Metal Composition of Oil Shale Ash from Oxyfuel Combustion. ACS Omega, 2020, 5, 32498-32506.	1.6	6
370	Combustion Characteristics of Heavy Liquid Fuels in a Bubbling Fluidized Bed. Journal of Energy Resources Technology, Transactions of the ASME, 2002, 124, 40-46.	1.4	5
371	A study on mechanisms of nitrous oxide formation in post-combustion flue gases. Atmospheric Environment, 2004, 38, 1123-1131.	1.9	5
372	Simultaneous CO2 and SO2 Capture at Fluidized Bed Combustion Temperatures. , 2005, , 917.		5
373	Understanding the Behavior of Calcium Compounds in Petroleum Coke Fluidized Bed Combustion (FBC) Ash. Journal of Energy Resources Technology, Transactions of the ASME, 2006, 128, 290-299.	1.4	5
374	Reactions of solid CaSO4 and Na2CO3 and formation of sodium carbonate sulfate double salts. Thermochimica Acta, 2007, 459, 121-124.	1.2	5
375	Object-oriented simulation of an Endex reactor for separation of carbon dioxide from flue emissions. Computers and Chemical Engineering, 2012, 40, 213-222.	2.0	5
376	Design Principles of Inert Substrates for Exploiting Gold Clusters' Intrinsic Catalytic Reactivity. Scientific Reports, 2015, 5, 15095.	1.6	5
377	Evaluation of Potential Uses of AFBC Solid Wastes. Materials Research Society Symposia Proceedings, 1986, 86, 353.	0.1	4
378	Sulphur Oxidation States in Residues from a Small-Scale Circulating Fluidized Bed Combustor. Materials Research Society Symposia Proceedings, 1988, 136, 9.	0.1	4

#	Article	IF	CITATIONS
379	Petroleum Coke and Coal Start-Up Testing in Bubbling Fluidized Bed Combustors. Journal of Energy Resources Technology, Transactions of the ASME, 1997, 119, 96-102.	1.4	4
380	Mechanism for N2O formation from NO at ambient temperature. AICHE Journal, 2003, 49, 277-282.	1.8	4
381	A Simulation Study for Fluidized Bed Combustion of Petroleum Coke With CO2 Capture. , 2003, , 603.		4
382	Petroleum Coke FBC Ash: A Detailed Look at Calcium in the Ash. , 2003, , 613.		4
383	Treatment of tar pond sludge in a circulating fluidized bed combustor. Remediation, 2005, 15, 63-73.	1.1	4
384	Novel porous aromatic framework with excellent separation capability of CO2 in N2 or CH4. Chemical Research in Chinese Universities, 2014, 30, 1018-1021.	1.3	4
385	Post-Combustion Carbon Capture and Storage in Industry. Energy, Environment, and Sustainability, 2019, , 39-53.	0.6	4
386	Simulation of a calcium looping CO 2 capture process for pressurized fluidized bed combustion. Canadian Journal of Chemical Engineering, 2020, 98, 75-83.	0.9	4
387	The emission characteristic of particulate matter in the spray-and-scattered-bubble process during ammonia desulfurization: Experiments, mechanisms and prospects. Journal of Cleaner Production, 2020, 269, 122466.	4.6	4
388	Development and validation of a novel process model for fluidized bed combustion: Application for efficient combustion of lowâ€grade coal. Canadian Journal of Chemical Engineering, 2021, 99, 1510-1519.	0.9	4
389	Preparation and Characterization of Lime/Coal Ash Sorbents for Sequential CO ₂ and SO ₂ Capture at High Temperature. Energy & Fuels, 2021, 35, 10669-10679.	2.5	4
390	Heat transfer characteristics of horizontal tubes in the dilute phase of the pressurized fluidized bed. International Communications in Heat and Mass Transfer, 2021, 126, 105370.	2.9	4
391	Hydration and Pelletization of CaCO3-Derived Sorbents for In-Situ CO2 Capture. , 2009, , 569-575.		4
392	The Peak Flammability Limits of Hydrogen Sulfide, Carbon Dioxide, and Air for Upward Propagation. Industrial & Engineering Chemistry Fundamentals, 1979, 18, 238-240.	0.7	3
393	Properties and Environmental Considerations Related to AFBC Solid Residues. Materials Research Society Symposia Proceedings, 1986, 86, 49.	0.1	3
394	Effect of CaSO4 on the Strength Development of Sorbents in CFBC Boilers Firing High-Sulfur Fuels. Industrial & Engineering Chemistry Research, 2003, 42, 3245-3249.	1.8	3
395	The Behavior of Free Lime in CFBC Ashes. , 2003, , 191.		3
396	QoS enhancement in space data communication: a network coding approach. International Journal of Electronics, 2017, 104, 34-46.	0.9	3

#	Article	IF	CITATIONS
397	Commutative encryption and watermarking based on SVD for secure GIS vector data. Earth Science Informatics, 2021, 14, 2249-2263.	1.6	3
398	Economic case study of ash reactivation for a generic 150 MWe Canadian circulating fluidized bed combustor. International Journal of Environmental Studies, 2007, 64, 457-465.	0.7	2
399	Operation of a 25 KW _{th} Calcium Looping Pilot-plant with High Oxygen Concentrations in the Calciner. Journal of Visualized Experiments, 2017, , .	0.2	2
400	Effect of Operating Conditions on SO2 and NOx Emissions in Oxy-Fuel Mini-CFB Combustion Tests. , 2009, , 936-940.		2
401	On sorbent performance for cyclic absorption of CO2. , 2005, , 1801-1805.		2
402	Hydration of Partially Sulphated CFBC Ash With Saturated Steam. , 2003, , .		2
403	Gasification Decoupling during Pressurized Oxy-Coal Combustion by the Isotope Tracer Method. Energy & Fuels, 2022, 36, 3239-3246.	2.5	2
404	A Scanning Electron Microscope Study on Agglomeration in Petroleum Coke-Fired FBC Boiler. , 2003, , 387.		1
405	Assessment of Sorbent Reactivation by Water Hydration for Fluidized Bed Combustion Application. , 2003, , 429.		1
406	Agglomeration in an Industrial FBC Boiler. , 2003, , 209.		1
407	Treatment of Sydney Tar Pond Sludge in CFBC. , 2005, , 911.		1
408	Solubility of FBC Ashes. Journal of Chemical & amp; Engineering Data, 2007, 52, 1557-1562.	1.0	1
409	Chemical Looping Combustion. , 2012, , 1623-1654.		1
410	OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK. Energy Procedia, 2014, 63, 504-510.	1.8	1
411	Evaluation of a calcium looping CO2 capture plant retrofit to a coal-fired power plant. Computer Aided Chemical Engineering, 2016, 38, 2115-2120.	0.3	1
412	Oxy-fuel Firing Technology for Power Generation. , 2012, , 1515-1543.		1
413	Reactivation Studies on Six Fly Ashes From Commercial CFB Boilers. , 2005, , .		1
414	Combustion Characteristics of Natural Gas in a Circulating Fluidized Bed. , 2003, , .		1

#	Article	IF	CITATIONS
415	Capture of CO2 with CaO in a pilot fluidized bed carbonator experimental results and reactor model. , 2005, , 1107-1113.		1
416	Oxy-Fuel Firing Technology for Power Generation. , 2017, , 2527-2555.		1
417	A Novel Method for the Estimation of Higher Heating Value of Municipal Solid Wastes. Energies, 2022, 15, 2593.	1.6	1
418	High-temperature filtration demonstration applying Fe-Al intermetallic membrane for a 410Ât/h scale coal-fired power plants. Fuel Processing Technology, 2022, 233, 107312.	3.7	1
419	A Discussion of the Temperature Maximum for Sulfur Capture Efficiency in Fluidized Bed Combustion Systems. , 2003, , 451.		Ο
420	Observations on the Hydration Behaviour of a Selection of Bed and Fly Ashes From FBC Installations. , 2005, , 903.		0
421	A SIMPLE DESCRIPTION OF HIGH-TEMPERATURE SULPHATION BEHAVIOR FOR CaO-BASED SORBENTS. Chemical Engineering Communications, 2007, 194, 1169-1175.	1.5	Ο
422	COUP-TFII promotes metastasis and epithelial-to-mesenchymal transition through upregulating Snail in human intrahepatic cholangiocarcinoma. Acta Biochimica Et Biophysica Sinica, 2020, 52, 1247-1256.	0.9	0
423	Cover Image, Volume 59, Issue 6. Molecular Carcinogenesis, 2020, 59, i.	1.3	0
424	Oxy-fuel Firing Technology for Power Generation and Heat and Steam Production. , 2021, , 1-27.		0
425	The effect of H2O on the sulfation of Havelock limestone under oxy-fuel conditions in a thermogravimetric analyser. Turkish Journal of Chemistry, 2021, 45, 452-462.	0.5	Ο
426	Gases—An Open Access Journal. Gases, 2021, 1, 51-52.	1.0	0
427	Dioxin and Furan Formation in FBC Boilers. , 2002, , 43-58.		Ο
428	Reactivation of CFBC Ash by Sonic Energy. , 2005, , .		0
429	Reactivation of Fluidized Bed Combustor Ashes: Economic Evaluation and Implementation. , 2005, , .		Ο
430	Carbonation of Fly Ash in Oxy-fuel CFB Combustion. , 2007, , 799-804.		0
431	NOVEL CO2 CONTROL METHOD BY MEANS OF CO2 CHEMICAL LOOPING. International Journal of Energy for A Clean Environment, 2008, 9, 91-101.	0.6	0
432	Combustion Of Poultry-Derived Fuel in a CFBC. , 2009, , 271-276.		0

#	Article	IF	CITATIONS
433	Role of the Water-Gas Shift Reaction in CO2 Capture from Gasification Syngas Using Limestones. , 2009, , 540-548.		0
434	Chemical Looping Combustion. , 2015, , 1-27.		0
435	Oxy-Fuel Firing Technology for Power Generation. , 2015, , 1-24.		0
436	Chemical Looping Combustion. , 2017, , 2647-2679.		0
437	Insight into the Mechanism and Effect of H ₂ O on CaO Sulfation by Density Functional Theory. Energy & Fuels, 2022, 36, 3749-3759.	2.5	0
438	A ligand-based ELISA for detection of soluble asialoglycoprotein receptor in human serum. Journal of Carbohydrate Chemistry, 2021, 40, 440-453.	0.4	0
439	Chemical Looping Technology. , 2022, , 1689-1723.		0
440	Oxy-fuel Firing Technology for Power Generation and Heat and Steam Production. , 2022, , 1625-1651.		0