Alexander N Chaika

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8717984/alexander-n-chaika-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

152 232 9 13 g-index

170 288 13.1 2.67 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
152	Surface functionalization of few-layer graphene on ESiC(001) by Neutral Red dye. <i>Applied Surface Science</i> , 2022 , 585, 152542	6.7	O
151	Atomic and Electronic Structure of a Multidomain GeTe Crystal. ACS Nano, 2020,	16.7	10
150	Graphene-Based Nanocomposite Materials for the Design of Electrochemical Sensors and Their Applications 2019 , 535-568		O
149	Supramolecular Graphene-Based Systems for Drug Delivery 2019 , 443-479		
148	Graphite in Metallic Materials Growths, Structures, and Defects of Spheroidal Graphite in Ductile Iron 2019 , 1-39		
147	Biological, Biomedical, and Medical Applications of Graphene and Graphene-Based Materials (G-bMs) 2019 , 1-41		1
146	Adaptation and Viability of Graphene-Based Materials in Clinical Improvement 2019 , 79-98		
145	Modeling of Graphene-Based Electronics: From Material Properties to Circuit Simulations 2019 , 73-120		
144	Graphene Oxide Multilayers Obtained from Bamboo: New Synthesis Method, Basic Properties, and Future Electronic Applications 2019 , 191-236		1
143	Topological Design of Graphene 2019 , 1-44		2
142	Graphene in Bioelectronics 2019 , 253-262		
141	Graphene-Based Advanced Nanostructures 2019 , 471-493		
140	Exfoliated Graphene-Based 2D Materials: Synthesis and Catalytic Behaviors 2019 , 529-558		4
139	Graphene Metamaterial Electron Optics: Excitation Processes and Electro-Optical Modulation 2019 , 26.	3-296	0
138	Synthesis, Characterization, and Applications of Polymer/Graphene Oxide Composite Materials 2019 , 541-573		
137	Graphene-Based Materials for Advanced Lithium-Ion Batteries 2019 , 197-218		
136	Nitrogen-Doped Carbon Nanostructures as Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER) Electrocatalysts in Acidic Media 2019 , 373-413		1

135	Electrochemical Biosensors Based on Green Synthesized Graphene and Graphene Nanocomposites 2019 , 233-296	0
134	Graphene Composites 2019 , 1-25	O
133	Graphene-Based Biosensors in Agro-Defense: Food Safety and Animal Health Diagnosis 2019 , 29-57	1
132	Buckling Characteristics of Bilayer Graphene Sheets Subjected to Humid Thermomechanical Loading 2019 , 433-454	1
131	Features and Prospects for Epitaxial Graphene on SiC 2019 , 153-199	1
130	Graphene and Graphene-Based Hybrid Composites for Advanced Rechargeable Battery Electrodes 2019 , 147-196	
129	Graphene-Based Electrochemical Aptasensors 2019 , 465-482	1
128	Graphene and Graphene Nanocomposite-Based Electrochemical Sensors 2019 , 631-661	1
127	Proximity-Induced Topological Transition and Strain-Induced Charge Transfer in Graphene/MoS2 Bilayer Heterostructures 2019 , 1-28	2
126	GrapheneBiC Reinforced Hybrid Composite Foam: Response to High Strain Rate Deformation 2019 , 101-116	
125	Three-Dimensional Graphene Foams for Energy Storage Applications 2019 , 49-91	
124	Graphene Structures: From Preparations to Applications 2019 , 323-357	2
123	Graphene Molecules as Platforms for SERS Detection: A Future Perspective 2019 , 429-464	
122	Self-Organized 3D Graphene as a Robust Sensing Platform 2019 , 483-507	1
121	Interactions of Molecular Species with Graphene and Graphene Sensing 2019 , 509-533	
120	Self-Assembled Thin Films of Graphene Materials for Sensors 2019 , 569-602	
119	Electrochemically Reduced Graphene Oxide: A Smart Material for Electrochemical Sensing 2019 , 603-629	2
118	Controlling the Electromagnetic and Electrochemical Sensing Properties of Graphene via Heteroatom Doping 2019 , 663-682	2

117	Graphene and Graphene Composites-Modified Electrodes Surfaces for Selective Sensing of Dopamine in the Presence of Ascorbic Acid and Uric Acid 2019 , 683-706	1
116	Three-Dimensional Graphene-Based Structures: Production Methods, Properties, and Applications 2019 , 359-387	3
115	Finite Element Analysis of Graphene Materials 2019 , 707-730	
114	Quantitative Real-Time Evaluation of C/O Ratios and Stepwise Control of Deoxidization of Graphene Oxide Using Plasmonic-Based Electrochemical Spectroscopy 2019 , 731-765	
113	Effect of Graphene Oxide Nanosheets on the Structure and Properties of Cement Composites 2019 , 43-78	
112	Graphene-Based Synaptic Devices for Neuromorphic Applications 2019 , 99-142	
111	Graphene-Based Materials for Implants 2019 , 143-175	0
110	Ultrashort Pulse Fiber Laser Generation Using Molybdenum Disulfide and Tungsten Disulfide Saturable Absorber 2019 , 177-197	
109	Graphene-Modified Asphalt 2019 , 199-223	
108	Electrochemistry of Graphene Materials 2019 , 389-419	
107	Graphene-Based Materials for Brain Targeting 2019 , 225-246	1
106	Antimicrobial Activities of Graphene-Based Materials 2019 , 247-266	
105	Reworking Defective Soldering Joints With Graphene Sheets and Gold Nanoparticles 2019 , 1-9	
104	Printed Graphene Radio Frequency and Sensing Applications for Internet of Things 2019 , 11-46	
103	Modeling and Characterization of the Metal Contact and the Channel in a Graphene Device 2019 , 47-71	
102	Hybrid GrapheneBilicon Photonic and Optoelectronic Integrated Devices 2019 , 121-146	
101	Sustainability, Research, and Development of Graphene for Engineering Applications 2019, 147-190	
100	Hydrogen Functionalized Graphene Nanostructure Material for Spintronic Application 2019 , 421-450	

99	Laser Direct-Writing Graphene Oxide to Graphene Mechanisms to Applications 2019, 237-287	O
98	Wave Propagation Responses of Double-Layered Graphene Sheets in Hygrothermal Environment 2019 , 289-307	
97	Graphene Terahertz Leaky-Wave Antennas 2019 , 309-340	
96	Terahertz Applications of Graphene 2019 , 341-357	
95	Modelling of Graphene Nanoribbons Antenna Based on MoM-GEC Method to Enhance Nanocommunications in Terahertz Range 2019 , 359-392	1
94	Graphene-Based Plasmonic Components for THz Applications: Planar Ring Array Devices 2019 , 393-408	
93	Polymer/Graphene Nanomaterials: A Platform for Current High-Tech Applications 2019, 455-469	1
92	The Impact of Uniaxial Strain and Defect Pattern on Magnetoelectronic and Transport Properties of Graphene 2019 , 451-502	1
91	Exploiting Graphene as an Efficient Catalytic Template for Organic Transformations: Synthesis, Characterization and Activity Evaluation of Graphene-Based Catalysts 2019 , 503-528	
90	Functionalization of Graphene with Molecules and/or Nanoparticles for Advanced Applications 2019 , 559-609	O
89	Carbon Allotropes, Between Diamond and Graphite: How to Create Semiconductor Properties in Graphene and Related Structures 2019 , 611-647	
88	Graphene at the Metal©xide Interface: A New Approach to Modify the Chemistry of Supported Metals 2019 , 45-71	
87	The Combinatorial Structure of Graphene 2019 , 73-94	
86	Interacting Electrons in Graphene 2019 , 95-125	
85	Computational Determination of the Properties of Graphene Nanoribbons 2019 , 127-145	
84	Synthetic Electric Fields Influence the Non-Stationary Processes in Graphene 2019 , 147-193	
83	Interaction and Manipulation of Bi Adatoms on Monolayer Epitaxial Graphene 2019 , 195-218	
82	Strain Engineering: Electromechanical Properties of Graphene 2019 , 219-243	

81 Characteristic Mechanical Responses of Graphene Membranes **2019**, 245-271

80	Graphene and Its Derivatives as Platforms for MALDI-MS 2019 , 273-289	4
79	Characterization and Dynamic Manipulation of Graphene by In Situ Transmission Electron Microscopy at Atomic Scale 2019 , 291-314	
78	Methods of Synthesis and Physicochemical Properties of Fluorographenes 2019 , 63-100	
77	Peculiarities of Quasi-Particle Spectra in Graphene Nanostructures 2019 , 315-387	1
76	Complex Refractive Index (RI) of Graphene 2019 , 389-412	2
75	Fractional Quantum Hall Effect in Graphene, a Topological Approach 2019 , 413-453	
74	Graphene Plasmonic: Switching Applications 2019 , 455-505	3
73	Theoretical Study and Numerical Modeling of Graphenels Electromagnetic Response 2019, 507-548	
72	Graphene-Like ANB8N Compounds on Metals and Semiconductors 2019 , 549-591	1
71	Lower Dimensional Materials 2019 , 593-611	
70	Nature of Graphene, Its Chemical Structure, Composites, Synthesis, Properties, and Applications 2019 , 613-636	1
69	Planar Graphene Superlattices 2019 , 29-82	
68	Magnetic and Optical Properties of Graphene Materials with Porous Defects 2019 , 83-111	
67	Graphynes: Advanced Carbon Materials with Layered Structure 2019 , 113-150	7
66	Nanoelectronic Application of Graphyne and Its Structural Derivatives 2019 , 151-176	
65	Twisted Bilayer Graphene: Low-Energy Physics, Electronic and Optical Properties 2019 , 177-231	6
64	Effects of Charged Coulomb Impurities on Low-Lying Energy Spectra in Graphene Magnetic Dot and Ring 2019 , 233-252	

63	Linear Carbon: From 1D Carbyne to 2D Hybrid sp-sp2 Nanostructures Beyond Graphene 2019 , 297-340	1
62	Band Structure Modifications in Beyond Graphene Materials 2019 , 341-372	
61	Atomic Structure and Electronic Properties of Few-Layer Graphene on SiC(001) 2019, 117-151	1
60	Chemically Modified 2D Materials: Production and Applications 2019 , 373-400	1
59	Black Phosphorus Saturable Absorber for Passive Mode-Locking Pulses Generation 2019 , 401-430	
58	Search for Fundamental Physics on Table Top Experiments with DiraclWeyl Materials 2019, 431-466	
57	Graphene-Reinforced Advanced Composite Materials 2019 , 27-89	3
56	Graphene-Based Composite Materials 2019 , 91-114	
55	Interfacial Mechanical Properties of Graphene/Substrate System: Measurement Methods and Experimental Analysis 2019 , 115-146	
54	Graphene-Based Ceramic Composites: Processing and Applications 2019 , 147-169	
54 53	Graphene-Based Ceramic Composites: Processing and Applications 2019 , 147-169 Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019 , 171-202	1
		1
53	Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019 , 171-202	
53 52	Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019 , 171-202 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications 2019 , 203-232 Graphene-Based Composites with Shape Memory Effect P roperties, Applications, and Future	
53 52 51	Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019 , 171-202 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications 2019 , 203-232 Graphene-Based Composites with Shape Memory Effect® roperties, Applications, and Future Perspectives 2019 , 233-259 Graphene-Based Scroll Structures: Optical Characterization and Its Application in Resistive	
53 52 51 50	Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019, 171-202 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications 2019, 203-232 Graphene-Based Composites with Shape Memory Effect® roperties, Applications, and Future Perspectives 2019, 233-259 Graphene-Based Scroll Structures: Optical Characterization and Its Application in Resistive Switching Memory Devices 2019, 261-283	1
53 52 51 50 49	Ab Initio Design of 2D and 3D Graphene-Based Nanostructure 2019, 171-202 Graphene-Based Composite Nanostructures: Synthesis, Properties, and Applications 2019, 203-232 Graphene-Based Composites with Shape Memory Effect® roperties, Applications, and Future Perspectives 2019, 233-259 Graphene-Based Scroll Structures: Optical Characterization and Its Application in Resistive Switching Memory Devices 2019, 261-283 Fabrication and Properties of Copper© raphene Composites 2019, 285-322	1

45	Functional Graphene Oxide/Epoxy Nanocomposite Coatings with Enhanced Protection Properties 2019 , 419-442	
44	Polymeric Nanocomposites Including Graphene Nanoplatelets 2019 , 481-515	5
43	Graphene OxidePolyacrylamide Composites: Optical and Mechanical Characterizations 2019, 517-540	
42	Graphitic Carbon/Graphene on Si(111) via Direct Deposition of Solid-State Carbon Atoms: Growth Mechanism and Film Characterization 2019 , 201-247	
41	Graphene Nanomaterials in Energy and Environment Applications 2019 , 1-25	1
40	Graphene as Nanolubricant for Machining 2019 , 27-48	
39	Graphene-Based Materials for Supercapacitors and Conductive Additives of Lithium Ion Batteries 2019 , 219-298	
38	Graphene-Based Flexible Actuators, Sensors, and Supercapacitors 2019 , 299-337	
37	Graphene as Catalyst Support for the Reactions in Fuel Cells 2019 , 339-372	
36	Chemical Reactivity and Variation in Electronic Properties of Graphene on Ni(111) and Reduced Graphene Oxide 2019 , 249-294	
35	Recent Advances in Graphene-Based Materials for Photocatalytic H2 Evolution 2019, 415-433	
34	Graphene Thermal Functional Device and Its Property Characterization 2019 , 435-468	
33	Self- and Directed-Assembly of Metallic and Nonmetallic Fluorophors: Considerations into Graphene and Graphene Oxides for Sensing and Imaging Applications 2019 , 469-505	1
32	Stimuli-Responsive Graphene-Based Matrices for Smart Therapeutics 2019 , 507-533	
31	Application of Graphene Materials in Molecular Diagnostics 2019 , 535-560	
30	Graphene Oxide Membranes for Liquid Separation 2019 , 561-573	
29	Graphene-Based Biosensors: Fundamental Concepts, Outline of Utility, and Future Scopes 2019 , 1-14	
28	Graphene for Electrochemical Biosensors in Biomedical Applications 2019 , 15-28	

27	Chlorophyll and Graphene: A New Paradigm of Biomimetic Symphony 2019 , 295-322		
26	Trends and Frontiers in Graphene-Based (Bio)sensors for Pesticides Electroanalysis 2019 , 59-98		1
25	Graphene-Based Biosensors: Design, Construction, and Validation. Toward a Nanotechnological Tool for the Rapid in-Field Detection of Food Toxicants and Environmental Pollutants 2019 , 99-116		1
24	Application of Porous Graphene in Electrochemical Sensors and Biosensors 2019 , 117-142		
23	Reduced Graphene Oxide for Biosensing and Electrocatalytic Applications 2019, 143-179		
22	Recent Progress in the Graphene-Based Electrochemical Biosensors Development 2019 , 181-232		
21	Recent Biosensing Applications of Graphene-Based Nanomaterials 2019 , 297-348		1
20	Graphene-Based Sensors: Applications in Electrochemical (Bio)sensing 2019 , 349-369		2
19	Graphene-Based Fiber Optic Label-Free Biosensor 2019 , 371-396		1
18	Label-Free Biosensors Based on Graphene: State-of-the-Art 2019 , 397-427		0
17	Graphene-Based Nanomaterials in Tissue Engineering and Regenerative Medicine 2019, 637-658		3
16	Graphene Quantum Dots New Member of the Graphene Family: Structure, Properties, and Biomedical Applications 2019 , 267-299		
15	Functionalized Graphene Nanomaterials as Biocatalysts: Recent Developments and Future Prospects 2019 , 301-323		
14	Continuous Graphene Oxide Fiber and Its Applications 2019 , 409-431		
13	GrapheneBynthesis and Quality Optimization 2019 , 41-62		
12	Electronic Transport upon Adsorption of Biomolecules on Graphene 2019 , 767-792		
11	Three-Dimensional Graphene Materials: Synthesis and Applications in Electrocatalysts and Electrochemical Sensors 2019 , 93-145		
10	Layer-by-Layer Graphene Growth on ÆiC/Si(001). <i>ACS Nano</i> , 2019 , 13, 526-535	16.7	10

9	A photochemical approach for a fast and self-limited covalent modification of surface supported graphene with photoactive dyes. <i>Nanotechnology</i> , 2018 , 29, 275705	3.4	4	
8	Step bunching with both directions of the current: Vicinal W(110) surfaces versus atomistic-scale model. <i>Physical Review B</i> , 2018 , 97,	3.3	10	
7	Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. <i>Nature Communications</i> , 2017 , 8, 14453	17.4	23	
6	Graphene on cubic-SiC. <i>Progress in Materials Science</i> , 2017 , 89, 1-30	42.2	22	
5	High Resolution STM Imaging 2015 , 561-619		O	
4	Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries. <i>ACS Nano</i> , 2015 , 9, 8967-75	16.7	18	
3	Rotated domain network in graphene on cubic-SiC(001). <i>Nanotechnology</i> , 2014 , 25, 135605	3.4	12	
2	Continuous wafer-scale graphene on cubic-SiC(001). Nano Research, 2013, 6, 562-570	10	27	
1	Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. <i>Nano Research</i> , 2013 , 6, 929-937	10	12	