
Seol-Ha Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717932/publications.pdf Version: 2024-02-01

SEOL-HALEONC

#	Article	IF	CITATIONS
1	Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydrate Polymers, 2018, 186, 290-298.	10.2	115
2	Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy, 2021, 79, 105463.	16.0	104
3	Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Materials Letters, 2018, 229, 114-117.	2.6	100
4	Strong and Biostable Hyaluronic Acid–Calcium Phosphate Nanocomposite Hydrogel via in Situ Precipitation Process. Biomacromolecules, 2016, 17, 841-851.	5.4	60
5	Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Materials Science and Engineering C, 2017, 79, 866-874.	7.3	37
6	Polydeoxyribonucleotide-delivering therapeutic hydrogel for diabetic wound healing. Scientific Reports, 2020, 10, 16811.	3.3	35
7	Effective Wound Healing by Antibacterial and Bioactive Calcium-Fluoride-Containing Composite Hydrogel Dressings Prepared Using in Situ Precipitation. ACS Biomaterials Science and Engineering, 2018, 4, 2380-2389.	5.2	33
8	Porous calcium phosphate–collagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Materials Science and Engineering C, 2020, 109, 110480.	7.3	32
9	Calcium Phosphate–Collagen Scaffold with Aligned Pore Channels for Enhanced Osteochondral Regeneration. Advanced Healthcare Materials, 2017, 6, 1700966.	7.6	31
10	Hyaluronic Acid-Based Hybrid Hydrogel Microspheres with Enhanced Structural Stability and High Injectability. ACS Omega, 2019, 4, 13834-13844.	3.5	30
11	One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization. Colloids and Surfaces B: Biointerfaces, 2019, 174, 308-315.	5.0	30
12	Acceleration of the healing process of full-thickness wounds using hydrophilic chitosan–silica hybrid sponge in a porcine model. Journal of Biomaterials Applications, 2018, 32, 1011-1023.	2.4	26
13	Facile strategy involving low-temperature chemical cross-linking to enhance the physical and biological properties of hyaluronic acid hydrogel. Carbohydrate Polymers, 2018, 202, 545-553.	10.2	24
14	Long-lasting and bioactive hyaluronic acid-hydroxyapatite composite hydrogels for injectable dermal fillers: Physical properties and in vivo durability. Journal of Biomaterials Applications, 2016, 31, 464-474.	2.4	23
15	Fluorine-ion-releasing injectable alginate nanocomposite hydrogel for enhanced bioactivity and antibacterial property. International Journal of Biological Macromolecules, 2019, 123, 866-877.	7.5	22
16	Enhanced mechanical stability of PTFE coating on nano-roughened NiTi for biomedical applications. Materials Letters, 2018, 216, 12-15.	2.6	21
17	A combination strategy of functionalized polymer coating with Ta ion implantation for multifunctional and biodegradable vascular stents. Journal of Magnesium and Alloys, 2021, 9, 2194-2206.	11.9	20
18	In vitro and in vivo evaluation of polylactic acid-based composite with tricalcium phosphate microsphere for enhanced biodegradability and osseointegration. Journal of Biomaterials Applications, 2018, 32, 1360-1370.	2.4	18

SEOL-HA JEONG

#	Article	IF	CITATIONS
19	Chitosan-Based Dressing Materials for Problematic Wound Management. Advances in Experimental Medicine and Biology, 2018, 1077, 527-537.	1.6	18
20	Hyaluronic acidâ€hydroxyapatite nanocomposite hydrogels for enhanced biophysical and biological performance in a dermal matrix. Journal of Biomedical Materials Research - Part A, 2017, 105, 3315-3325.	4.0	16
21	Dualâ€Crosslinking of Hyaluronic Acid–Calcium Phosphate Nanocomposite Hydrogels for Enhanced Mechanical Properties and Biological Performance. Macromolecular Materials and Engineering, 2017, 302, 1700160.	3.6	13
22	Biomimetic Coating of Hydroxyapatite on Glycerol Phosphate-Conjugated Polyurethane via Mineralization. ACS Omega, 2017, 2, 981-987.	3.5	11
23	An Implantable Ionic Wireless Power Transfer System Facilitating Electrosynthesis. ACS Nano, 2020, 14, 11743-11752.	14.6	10
24	Strategy for Preparing Mechanically Strong Hyaluronic Acid–Silica Nanohybrid Hydrogels via In Situ Sol–Gel Process. Macromolecular Materials and Engineering, 2018, 303, 1800213.	3.6	7
25	Multilayered Polyurethane–Hydroxyapatite Composite for Meniscus Replacements. Macromolecular Materials and Engineering, 2019, 304, 1800352.	3.6	5
26	Enhanced biolubrication on biomedical devices using hyaluronic acid-silica nanohybrid hydrogels. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110503.	5.0	3
27	Preparation of Hyaluronicâ€Acidâ€Based Microspherical Particles with Tunable Morphology Using a Spray Method on a Superhydrophobic Surface. Macromolecular Materials and Engineering, 2019, 304, 1900100.	3.6	1
28	Use of thioglycerol on porous polyurethane as an effective theranostic capping agent for bone tissue engineering. Journal of Biomaterials Applications, 2019, 33, 955-966.	2.4	1