
Kursat Sendur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity of a tapered fiber refractive index sensor at diameters comparable to wavelength. Optik, 2022, 265, 169417.	2.9	5
2	Temperature assisted reflection control using VO ₂ /Si core-shell nanoparticles. Optical Materials Express, 2022, 12, 2974.	3.0	6
3	Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method. Nanomaterials, 2021, 11, 752.	4.1	19
4	Origins of the enhanced broadband absorption in black silicon. Journal of Applied Physics, 2021, 129, .	2.5	3
5	Tungsten Based Spectrally Selective Absorbers with Anisotropic Rough Surface Texture. Nanomaterials, 2021, 11, 2018.	4.1	7
6	Impedance mismatch-based enhancement of broadband reflectance of tungsten with bio-inspired multilayers. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276, 107899.	2.3	3
7	Crossover of spectral reflectance lineshapes in Ge-doped VO2 thin films. Optical Materials, 2020, 104, 109890.	3.6	6
8	Enhancing Spectral Reflection through Controlled Phase Distribution Using Doped Polar-Dielectric Metasurfaces. Materials, 2020, 13, 2007.	2.9	0
9	Spectrally selective filter design for passive radiative cooling. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1173.	2.1	23
10	Deagglomeration of nanoparticle clusters in a "cavitation on chip―device. AIP Advances, 2020, 10, 115204.	1.3	1
11	A Theoretical Treatment of THz Resonances in Semiconductor GaAs p–n Junctions. Materials, 2019, 12, 2412.	2.9	2
12	Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials, 2019, 12, 3090.	2.9	16
13	Morphology induced spectral reflectance lineshapes in VO2 thin films. Journal of Applied Physics, 2019, 125, .	2.5	6
14	Experimental and Numerical Investigation of Inlet Temperature Effect on Convective Heat Transfer of γ-Al ₂ O ₃ /Water Nanofluid Flows in Microtubes. Heat Transfer Engineering, 2019, 40, 738-752.	1.9	15
15	Broadband infrared reflective surfaces using doped and stacked polar dielectric layers. AIP Advances, 2018, 8, 025213.	1.3	5
16	Effect of electrostatic stabilization on thermal radiation transfer in nanosuspensions: Photo-thermal energy conversion applications. Renewable Energy, 2018, 119, 625-640.	8.9	14
17	Temperature and pressure effects on the spectral reflection of layered polar dielectrics. Materials Research Express, 2018, 5, 116207.	1.6	0
18	Thermally controlled femtosecond pulse shaping using metasurface based optical filters. Nanophotonics. 2018. 7. 659-668.	6.0	9

KURSAT SENDUR

#	Article	IF	CITATIONS
19	Selective IR response of highly textured phase change VO ₂ nanostructures obtained via oxidation of electron beam deposited metallic V films. Optical Materials Express, 2018, 8, 2035.	3.0	9
20	Chimera states in plasmonic nanoresonators. Photonics Research, 2018, 6, 427.	7.0	1
21	Focusing short-wavelength surface plasmons by a plasmonic mirror. Optics Letters, 2018, 43, 2208.	3.3	4
22	Entropy Generation Analysis of Laminar Flows of Water-Based Nanofluids in Horizontal Minitubes under Constant Heat Flux Conditions. Entropy, 2018, 20, 242.	2.2	10
23	Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1845.	2.1	13
24	Temperature-driven switchable-beam Yagi-Uda antenna using VO2 semiconductor-metal phase transitions. Optics Communications, 2017, 392, 109-113.	2.1	9
25	The effect of nanoparticle type and nanoparticle mass fraction on heat transfer enhancement in pool boiling. International Journal of Heat and Mass Transfer, 2017, 109, 157-166.	4.8	51
26	Interplay Between In-Plane and Out-of-Plane Resonances of Heptamer Oligomer Nanoapertures. Journal of Lightwave Technology, 2017, 35, 186-192.	4.6	0
27	Passive radiative cooling design with broadband optical thin-film filters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 198, 179-186.	2.3	153
28	Subcooled flow boiling heat transfer of γ-Al2O3/water nanofluids in horizontal microtubes and the effect of surface characteristics and nanoparticle deposition. Applied Thermal Engineering, 2017, 127, 536-546.	6.0	25
29	Increasing the stability of nanofluids with cavitating flows in micro orifices. Applied Physics Letters, 2016, 109, .	3.3	9
30	Tunable Surface Plasmon and Phonon Polariton Interactions for Moderately Doped Semiconductor Surfaces. Scientific Reports, 2016, 6, 34071.	3.3	10
31	Ferroelectric/Semiconductor/Tunnel-Junction Stacks for Nondestructive and Low-Power Read-Out Memory. IEEE Transactions on Electron Devices, 2016, 63, 2374-2379.	3.0	1
32	Femtosecond pulse shaping by ultrathin plasmonic metasurfaces. Journal of the Optical Society of America B: Optical Physics, 2016, 33, A1.	2.1	22
33	Optical Transmission Enhancement of Stacked Plasmonic Apertures. Journal of Lightwave Technology, 2016, 34, 961-968.	4.6	3
34	Pressure drop and heat transfer characteristics of nanofluids in horizontal microtubes under thermally developing flow conditions. Experimental Thermal and Fluid Science, 2015, 67, 37-47.	2.7	34
35	Plasmonic spiderweb nanoantenna surface for broadband hotspot generation. Optics Letters, 2014, 39, 6977.	3.3	8
36	Integrating Magnetic Heads With Plasmonic Nanostructures in Multilayer Configurations. IEEE Transactions on Magnetics, 2013, 49, 3687-3690.	2.1	2

KURSAT SENDUR

#	Article	IF	CITATIONS
37	Engineering the broadband spectrum of close-packed plasmonic honeycomb array surfaces. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 120, 70-80.	2.3	13
38	Boiling heat transfer enhancement of magnetically actuated nanofluids. Applied Physics Letters, 2013, 102, 163107.	3.3	18
39	Absorption efficiency enhancement in inorganic and organic thin film solar cells via plasmonic honeycomb nanoantenna arrays. Optics Letters, 2013, 38, 3119.	3.3	6
40	Optical aspects of the interaction of focused beams with plasmonic nanoparticles. , 2011, , .		0
41	Broadband plasmonic nanoantenna with an adjustable spectral response. Optics Express, 2011, 19, 1000.	3.4	54
42	Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry. Optics Express, 2011, 19, 22731.	3.4	20
43	Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack. Applied Physics A: Materials Science and Processing, 2011, 103, 703-707.	2.3	6
44	Tuning the polarization states of optical spots at the nanoscale onÂthe Poincaré sphere using a plasmonic nanoantenna. Applied Physics A: Materials Science and Processing, 2011, 103, 855-858.	2.3	1
45	Femtosecond pulse shaping using plasmonic snowflake nanoantennas. Physical Review A, 2011, 84, .	2.5	15
46	Circularly polarized localized near-field radiation atÂtheÂnanoscale. Applied Physics B: Lasers and Optics, 2010, 99, 67-74.	2.2	10
47	Polarization Aspects of Localized Optical Spots Obtained Using Plasmonic Nano-Antennas. Materials Research Society Symposia Proceedings, 2010, 1248, 1404.	0.1	Ο
48	Perpendicular oriented single-pole nano-optical transducer. Optics Express, 2010, 18, 4920.	3.4	3
49	Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures. Applied Physics Letters, 2010, 96, 141104.	3.3	27
50	Patterned medium for heat assisted magnetic recording. Applied Physics Letters, 2009, 94, .	3.3	20
51	Near-Field Radiation from Nano-Particles and Nano-Antennas Illuminated with a Focused Beam of Light. Materials Research Society Symposia Proceedings, 2009, 1182, 93.	0.1	1
52	Obtaining Circularly Polarized Optical Spots Beyond the Diffraction Limit Using Plasmonic Nano-Antennas. Materials Research Society Symposia Proceedings, 2009, 1208, 1.	0.1	0
53	Near-field optical power transmission of dipole nano-antennas. Applied Physics B: Lasers and Optics, 2009, 96, 325-335.	2.2	21
54	An integral equation based numerical solution for nanoparticles illuminated with collimated and focused light. Optics Express, 2009, 17, 7419.	3.4	4

KURSAT SENDUR

#	Article	IF	CITATIONS
55	Interaction of radially polarized focused light with a prolate spheroidal nanoparticle. Optics Express, 2009, 17, 10910.	3.4	13
56	Interaction of spherical nanoparticles with a highly focused beam of light. Optics Express, 2008, 16, 2874.	3.4	21
57	Effect of fly height and refractive index on the transmission efficiency of near-field optical transducers. Applied Physics Letters, 2006, 88, 091110.	3.3	8
58	Thermo-magneto-mechanical analysis of head–disk interface in heat assisted magnetic recording. Tribology International, 2005, 38, 588-593.	5.9	35
59	Near-Field Radiation from a Ridge Waveguide Transducer in the Vicinity of a Solid Immersion Lens. Physical Review Letters, 2005, 94, 043901.	7.8	51
60	Ridge waveguide as a near field aperture for high density data storage. Journal of Applied Physics, 2004, 96, 2743-2752.	2.5	77