Sushil Jajodia

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8717747/sushil-jajodia-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

265 8,078 48 83 g-index

289 9,625 2.4 6.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
265	PCAM: A Data-driven Probabilistic Cyber-alert Management Framework. <i>ACM Transactions on Internet Technology</i> , 2022 , 22, 1-24	3.8	O
264	. IEEE Transactions on Dependable and Secure Computing, 2021 , 18, 310-324	3.9	6
263	A Fake Online Repository Generation Engine for Cyber Deception. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2021 , 18, 518-533	3.9	21
262	Fake Document Generation for Cyber Deception by Manipulating Text Comprehensibility. <i>IEEE Systems Journal</i> , 2021 , 15, 835-845	4.3	4
261	Distributed Query Evaluation over Encrypted Data. Lecture Notes in Computer Science, 2021, 96-114	0.9	
260	Understanding Account Recovery in the Wild and Its Security Implications. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	
259	Disclose or Exploit? A Game-Theoretic Approach to Strategic Decision Making in Cyber-Warfare. <i>IEEE Systems Journal</i> , 2020 , 14, 3779-3790	4.3	4
258	Capture the Bot: Using Adversarial Examples to Improve CAPTCHA Robustness to Bot Attacks. <i>IEEE Intelligent Systems</i> , 2020 , 1-1	4.2	3
257	Modeling and Mitigating Security Threats in Network Functions Virtualization (NFV). <i>Lecture Notes in Computer Science</i> , 2020 , 3-23	0.9	1
256	An Outsourcing Model for Alert Analysis in a Cybersecurity Operations Center. <i>ACM Transactions on the Web</i> , 2020 , 14, 1-22	3.2	2
255	Two Can Play That Game. ACM Transactions on Intelligent Systems and Technology, 2020 , 11, 1-20	8	O
254	Generating Realistic Fake Equations in Order to Reduce Intellectual Property Theft. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2020 , 1-1	3.9	
253	. IEEE Transactions on Parallel and Distributed Systems, 2020 , 31, 16-33	3.7	1
252	Understanding the Manipulation on Recommender Systems through Web Injection. <i>IEEE Transactions on Information Forensics and Security</i> , 2020 , 15, 3807-3818	8	3
251	Optimizing the network diversity to improve the resilience of networks against unknown attacks. <i>Computer Communications</i> , 2019 , 145, 96-112	5.1	9
250	A methodology for ensuring fair allocation of CSOC effort for alert investigation. <i>International Journal of Information Security</i> , 2019 , 18, 199-218	2.8	8
249	Mitigating the insider threat of remote administrators in clouds through maintenance task assignments. <i>Journal of Computer Security</i> , 2019 , 27, 427-458	0.8	1

248	CASFinder: Detecting Common Attack Surface. Lecture Notes in Computer Science, 2019, 338-358	0.9	О
247	FakeTables: Using GANs to Generate Functional Dependency Preserving Tables with Bounded Real Data 2019 ,		4
246	Adaptive Cyber Defenses for Botnet Detection and Mitigation. <i>Lecture Notes in Computer Science</i> , 2019 , 156-205	0.9	2
245	Optimizing Alert Data Management Processes at a Cyber Security Operations Center. <i>Lecture Notes in Computer Science</i> , 2019 , 206-231	0.9	3
244	Proactive Defense Through Deception. Advances in Information Security, 2019, 169-202	0.7	1
243	. IEEE Transactions on Information Forensics and Security, 2019 , 14, 1857-1870	8	3
242	Towards Intelligent Cyber Deception Systems 2019 , 21-33		4
241	. IEEE Transactions on Information Forensics and Security, 2019 , 14, 1155-1170	8	6
240	. IEEE Systems Journal, 2019 , 13, 1060-1071	4.3	6
239	SHARE. ACM Transactions on Internet Technology, 2018 , 18, 1-41	3.8	9
239	SHARE. ACM Transactions on Internet Technology, 2018, 18, 1-41 Defending from Stealthy Botnets Using Moving Target Defenses. IEEE Security and Privacy, 2018, 16, 92-97	3.8	9
	Defending from Stealthy Botnets Using Moving Target Defenses. IEEE Security and Privacy, 2018,		
238	Defending from Stealthy Botnets Using Moving Target Defenses. <i>IEEE Security and Privacy</i> , 2018 , 16, 92-97 Memory Forensic Challenges Under Misused Architectural Features. <i>IEEE Transactions on</i>	2	16
238	Defending from Stealthy Botnets Using Moving Target Defenses. <i>IEEE Security and Privacy</i> , 2018 , 16, 92-97 Memory Forensic Challenges Under Misused Architectural Features. <i>IEEE Transactions on Information Forensics and Security</i> , 2018 , 13, 2345-2358 A methodology to measure and monitor level of operational effectiveness of a CSOC. <i>International</i>	2	16
238 237 236	Defending from Stealthy Botnets Using Moving Target Defenses. <i>IEEE Security and Privacy</i> , 2018 , 16, 92-97 Memory Forensic Challenges Under Misused Architectural Features. <i>IEEE Transactions on Information Forensics and Security</i> , 2018 , 13, 2345-2358 A methodology to measure and monitor level of operational effectiveness of a CSOC. <i>International Journal of Information Security</i> , 2018 , 17, 121-134 A Graphical Model to Assess the Impact of Multi-Step Attacks. <i>Journal of Defense Modeling and</i>	2 8 2.8	16 8 13
238 237 236 235	Defending from Stealthy Botnets Using Moving Target Defenses. <i>IEEE Security and Privacy</i> , 2018 , 16, 92-97 Memory Forensic Challenges Under Misused Architectural Features. <i>IEEE Transactions on Information Forensics and Security</i> , 2018 , 13, 2345-2358 A methodology to measure and monitor level of operational effectiveness of a CSOC. <i>International Journal of Information Security</i> , 2018 , 17, 121-134 A Graphical Model to Assess the Impact of Multi-Step Attacks. <i>Journal of Defense Modeling and Simulation</i> , 2018 , 15, 79-93 Surviving unpatchable vulnerabilities through heterogeneous network hardening options. <i>Journal</i>	2 8 2.8	16 8 13
238 237 236 235 234	Defending from Stealthy Botnets Using Moving Target Defenses. <i>IEEE Security and Privacy</i> , 2018 , 16, 92-97 Memory Forensic Challenges Under Misused Architectural Features. <i>IEEE Transactions on Information Forensics and Security</i> , 2018 , 13, 2345-2358 A methodology to measure and monitor level of operational effectiveness of a CSOC. <i>International Journal of Information Security</i> , 2018 , 17, 121-134 A Graphical Model to Assess the Impact of Multi-Step Attacks. <i>Journal of Defense Modeling and Simulation</i> , 2018 , 15, 79-93 Surviving unpatchable vulnerabilities through heterogeneous network hardening options. <i>Journal of Computer Security</i> , 2018 , 26, 761-789 Adaptive reallocation of cybersecurity analysts to sensors for balancing risk between sensors.	2 8 2.8 0.4 0.8	16 8 13 11

230	Data synthesis based on generative adversarial networks. <i>Proceedings of the VLDB Endowment</i> , 2018 , 11, 1071-1083	3.1	78
229	Modeling and Mitigating the Insider Threat of Remote Administrators in Clouds. <i>Lecture Notes in Computer Science</i> , 2018 , 3-20	0.9	1
228	Generating Hard to Comprehend Fake Documents for Defensive Cyber Deception. <i>IEEE Intelligent Systems</i> , 2018 , 33, 16-25	4.2	9
227	Dynamic Optimization of the Level of Operational Effectiveness of a CSOC Under Adverse Conditions. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2018 , 9, 1-20	8	7
226	Optimal Scheduling of Cybersecurity Analysts for Minimizing Risk. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2017 , 8, 1-32	8	26
225	A Probabilistic Logic of Cyber Deception. <i>IEEE Transactions on Information Forensics and Security</i> , 2017 , 12, 2532-2544	8	23
224	Threat Modeling for Cloud Data Center Infrastructures. Lecture Notes in Computer Science, 2017, 302-31	19 .9	4
223	Computer-Aided Human Centric Cyber Situation Awareness. <i>Lecture Notes in Computer Science</i> , 2017 , 3-25	0.9	5
222	Detecting Stealthy Botnets in a Resource-Constrained Environment using Reinforcement Learning 2017 ,		14
221	An Integrated Framework for Cyber Situation Awareness. <i>Lecture Notes in Computer Science</i> , 2017 , 29-4	6 0.9	7
220	An authorization model for multi provider queries. <i>Proceedings of the VLDB Endowment</i> , 2017 , 11, 256-2	2 6 81	6
219	Securing Networks Against Unpatchable and Unknown Vulnerabilities Using Heterogeneous Hardening Options. <i>Lecture Notes in Computer Science</i> , 2017 , 509-528	0.9	6
218	Network Security Metrics 2017,		7
217	Measuring the Overall Network Security by Combining CVSS Scores Based on Attack Graphs and Bayesian Networks 2017 , 1-23		11
216	Refining CVSS-Based Network Security Metrics by Examining the Base Scores 2017 , 25-52		5
215	k-Zero Day Safety: Evaluating the Resilience of Networks Against Unknown Attacks 2017 , 75-93		1
214	A Suite of Metrics for Network Attack Graph Analytics 2017 , 141-176		8
213	A Novel Metric for Measuring Operational Effectiveness of a Cybersecurity Operations Center 2017 , 177-207		

212	Evaluating the Network Diversity of Networks Against Zero-Day Attacks 2017 , 117-140		1
211	Profiling Online Social Behaviors for Compromised Account Detection. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 11, 176-187	8	63
210	Minimum cost rule enforcement for cooperative database access. <i>Journal of Computer Security</i> , 2016 , 24, 379-403	0.8	3
209	AHEAD 2016 ,		13
208	Diversifying Network Services Under Cost Constraints for Better Resilience Against Unknown Attacks. <i>Lecture Notes in Computer Science</i> , 2016 , 295-312	0.9	10
207	Deceiving Attackers by Creating a Virtual Attack Surface 2016 , 167-199		15
206	A Moving Target Defense Approach to Disrupting Stealthy Botnets 2016 ,		27
205	Using temporal probabilistic logic for optimal monitoring of security events with limited resources. Journal of Computer Security, 2016 , 24, 735-791	0.8	3
204	Network Diversity: A Security Metric for Evaluating the Resilience of Networks Against Zero-Day Attacks. <i>IEEE Transactions on Information Forensics and Security</i> , 2016 , 11, 1071-1086	8	62
203	Efficient integrity checks for join queries in the cloud 1. Journal of Computer Security, 2016 , 24, 347-378	0.8	12
202	A moving target defense approach to mitigate DDoS attacks against proxy-based architectures 2016 ,		26
2 01	Dynamic Scheduling of Cybersecurity Analysts for Minimizing Risk Using Reinforcement Learning. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2016 , 8, 1-21	8	30
200	Loose associations to increase utility in data publishing 1. <i>Journal of Computer Security</i> , 2015 , 23, 59-88	0.8	11
199	Pareto-Optimal Adversarial Defense of Enterprise Systems. <i>ACM Transactions on Information and System Security</i> , 2015 , 17, 1-39		32
198	Now You See Me 2015 ,		5
197	Keeping Intruders at Bay: A Graph-theoretic Approach to Reducing the Probability of Successful Network Intrusions. <i>Communications in Computer and Information Science</i> , 2015 , 191-211	0.3	
196	Disrupting stealthy botnets through strategic placement of detectors 2015,		5
195	A deception based approach for defeating OS and service fingerprinting 2015 ,		11

194	Integrity for Approximate Joins on Untrusted Computational Servers. <i>IFIP Advances in Information and Communication Technology</i> , 2015 , 446-459	0.5	1
193	Numerical SQL Value Expressions Over Encrypted Cloud Databases. <i>Lecture Notes in Computer Science</i> , 2015 , 455-478	0.9	O
192	Security and Privacy of Data in a Cloud. Lecture Notes in Computer Science, 2014, 18-22	0.9	O
191	Secure Data Aggregation in Wireless Sensor Networks: Filtering out the Attacker's Impact. <i>IEEE Transactions on Information Forensics and Security</i> , 2014 , 9, 681-694	8	71
190	Encryption and Fragmentation for Data Confidentiality in the Cloud. <i>Lecture Notes in Computer Science</i> , 2014 , 212-243	0.9	17
189	. IEEE Transactions on Dependable and Secure Computing, 2014 , 11, 30-44	3.9	87
188	Fragmentation in Presence of Data Dependencies. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2014 , 11, 510-523	3.9	33
187	Consistency and enforcement of access rules in cooperative data sharing environment. <i>Computers and Security</i> , 2014 , 41, 3-18	4.9	5
186	Integrity for distributed queries 2014,		11
185	Self-healing wireless networks under insider jamming attacks 2014 ,		4
184	MTD 2014 2014 ,		_
			2
183	Metrics suite for network attack graph analytics 2014 ,		32
183			
	Metrics suite for network attack graph analytics 2014 ,	0.3	32
182	Metrics suite for network attack graph analytics 2014, Protecting Enterprise Networks through Attack Surface Expansion 2014, An Efficient Framework for Evaluating the Risk of Zero-Day Vulnerabilities. Communications in	0.3	3 ²
182 181	Metrics suite for network attack graph analytics 2014, Protecting Enterprise Networks through Attack Surface Expansion 2014, An Efficient Framework for Evaluating the Risk of Zero-Day Vulnerabilities. Communications in Computer and Information Science, 2014, 322-340		32 7 2
182 181 180	Metrics suite for network attack graph analytics 2014, Protecting Enterprise Networks through Attack Surface Expansion 2014, An Efficient Framework for Evaluating the Risk of Zero-Day Vulnerabilities. Communications in Computer and Information Science, 2014, 322-340 Network Hardening. SpringerBriefs in Computer Science, 2014,		32725

176	Minimum-Cost Network Hardening. SpringerBriefs in Computer Science, 2014, 23-38	0.4	2
175	Linear-Time Network Hardening. SpringerBriefs in Computer Science, 2014, 39-58	0.4	2
174	Automated Cyber Situation Awareness Tools and Models for Improving Analyst Performance. <i>Advances in Information Security</i> , 2014 , 47-60	0.7	8
173	TrustDump: Reliable Memory Acquisition on Smartphones. <i>Lecture Notes in Computer Science</i> , 2014 , 202	2-2338	18
172	Modeling Network Diversity for Evaluating the Robustness of Networks against Zero-Day Attacks. Lecture Notes in Computer Science, 2014 , 494-511	0.9	24
171	Formation of Awareness. Advances in Information Security, 2014 , 47-62	0.7	3
170	Consistent Query Plan Generation in Secure Cooperative Data Access. <i>Lecture Notes in Computer Science</i> , 2014 , 227-242	0.9	4
169	Optimizing Integrity Checks for Join Queries in the Cloud. Lecture Notes in Computer Science, 2014, 33-4	18 .9	4
168	Database Security and Privacy 2014 , 53-1-53-21		
167	Enabling Collaborative Data Authorization Between Enterprise Clouds 2014 , 149-169		
167 166	Enabling Collaborative Data Authorization Between Enterprise Clouds 2014 , 149-169 Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62	0.7	9
,		0.7	9
166	Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62	0.7	
166 165	Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62 Securing Mission-Centric Operations in the Cloud 2014 , 239-259	0.7	2
166 165 164	Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62 Securing Mission-Centric Operations in the Cloud 2014 , 239-259 Proof of Isolation for Cloud Storage 2014 , 95-121	0.7	2
166 165 164	Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62 Securing Mission-Centric Operations in the Cloud 2014 , 239-259 Proof of Isolation for Cloud Storage 2014 , 95-121 Verification of data redundancy in cloud storage 2013 ,		2 1 7
166 165 164 163	Recognizing Unexplained Behavior in Network Traffic. <i>Advances in Information Security</i> , 2014 , 39-62 Securing Mission-Centric Operations in the Cloud 2014 , 239-259 Proof of Isolation for Cloud Storage 2014 , 95-121 Verification of data redundancy in cloud storage 2013 , Enforcing dynamic write privileges in data outsourcing. <i>Computers and Security</i> , 2013 , 39, 47-63 Preserving privacy against external and internal threats in WSN data aggregation.	4.9	2 1 7 24

158	A Unified Framework for Measuring a Network's Mean Time-to-Compromise 2013,		13
157	Blog or block: Detecting blog bots through behavioral biometrics. <i>Computer Networks</i> , 2013 , 57, 634-64	6 5.4	24
156	Quantitative survivability evaluation of three virtual machine-based server architectures. <i>Journal of Network and Computer Applications</i> , 2013 , 36, 781-790	7.9	6
155	Providing Users[Anonymity in Mobile Hybrid Networks. <i>ACM Transactions on Internet Technology</i> , 2013 , 12, 1-33	3.8	12
154	Reliable mission deployment in vulnerable distributed systems 2013,		4
153	A Logic Framework for Flexible and Security-Aware Service Composition 2013,		3
152	On information leakage by indexes over data fragments 2013,		8
151	Switchwall: Automated Topology Fingerprinting and Behavior Deviation Identification. <i>Lecture Notes in Computer Science</i> , 2013 , 161-176	0.9	1
150	Extending Loose Associations to Multiple Fragments. Lecture Notes in Computer Science, 2013, 1-16	0.9	8
149	Rule Enforcement with Third Parties in Secure Cooperative Data Access. <i>Lecture Notes in Computer Science</i> , 2013 , 282-288	0.9	5
148	Recoverable Encryption through a Noised Secret over a Large Cloud. <i>Lecture Notes in Computer Science</i> , 2013 , 42-64	0.9	1
147	Rule Configuration Checking in Secure Cooperative Data Access 2013 , 135-149		2
146	TerraCheck: Verification of Dedicated Cloud Storage. <i>Lecture Notes in Computer Science</i> , 2013 , 113-127	0.9	
145	Secure Data Aggregation in Wireless Sensor Networks. <i>IEEE Transactions on Information Forensics and Security</i> , 2012 , 7, 1040-1052	8	69
144	Time-efficient and cost-effective network hardening using attack graphs 2012,		47
143	Aggregating CVSS Base Scores for Semantics-Rich Network Security Metrics 2012,		27
142	A Probabilistic Framework for Localization of Attackers in MANETs. <i>Lecture Notes in Computer Science</i> , 2012 , 145-162	0.9	2
141	. IEEE Transactions on Dependable and Secure Computing, 2012 , 9, 811-824	3.9	320

(2011-2012)

140	Trading Elephants for Ants: Efficient Post-attack Reconstitution. <i>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering</i> , 2012 , 460-469	0.2	
139	Integrating trust management and access control in data-intensive Web applications. <i>ACM Transactions on the Web</i> , 2012 , 6, 1-43	3.2	12
138	2012,		33
137	Access Rule Consistency in Cooperative Data Access Environment 2012 ,		5
136	Support for Write Privileges on Outsourced Data. <i>International Federation for Information Processing</i> , 2012 , 199-210		5
135	Enforcing Subscription-Based Authorization Policies in Cloud Scenarios. <i>Lecture Notes in Computer Science</i> , 2012 , 314-329	0.9	11
134	Recoverable Encryption through Noised Secret over a Large Cloud. <i>Lecture Notes in Computer Science</i> , 2012 , 13-24	0.9	1
133	Cauldron mission-centric cyber situational awareness with defense in depth 2011,		61
132	Automatic security analysis using security metrics 2011,		6
131	Privacy in geo-social networks: proximity notification with untrusted service providers and curious buddies. <i>VLDB Journal</i> , 2011 , 20, 541-566	3.9	94
130	Security considerations in data center configuration management 2011,		1
129	Private data indexes for selective access to outsourced data 2011 ,		10
128	Privacy of data outsourced to a cloud for selected readers through client-side encryption 2011,		7
127	Securing Topology Maintenance Protocols for Sensor Networks. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2011 , 8, 450-465	3.9	12
126	The ephemeral legion. Communications of the ACM, 2011, 54, 129-131	2.5	10
125	Authorization enforcement in distributed query evaluation*. <i>Journal of Computer Security</i> , 2011 , 19, 75	1 <i>ব</i> .94	17
124	Selective data outsourcing for enforcing privacy*. <i>Journal of Computer Security</i> , 2011 , 19, 531-566	0.8	24
123	Scalable Analysis of Attack Scenarios. <i>Lecture Notes in Computer Science</i> , 2011 , 416-433	0.9	24

122	Cooperative Data Access in Multi-cloud Environments. Lecture Notes in Computer Science, 2011, 14-28	0.9	1
121	Scalable Detection of Cyber Attacks. Communications in Computer and Information Science, 2011, 9-18	0.3	4
120	Combining fragmentation and encryption to protect privacy in data storage. <i>ACM Transactions on Information and System Security</i> , 2010 , 13, 1-33		116
119	Scalable Group Key Management for Secure Multicast: A Taxonomy and New Directions 2010 , 57-75		11
118	Fragments and loose associations. <i>Proceedings of the VLDB Endowment</i> , 2010 , 3, 1370-1381	3.1	28
117	Who is tweeting on Twitter 2010 ,		250
116	k-Zero Day Safety: Measuring the Security Risk of Networks against Unknown Attacks. <i>Lecture Notes in Computer Science</i> , 2010 , 573-587	0.9	40
115	Encryption policies for regulating access to outsourced data. <i>ACM Transactions on Database Systems</i> , 2010 , 35, 1-46	1.6	65
114	Localized Multicast: Efficient and Distributed Replica Detection in Large-Scale Sensor Networks. <i>IEEE Transactions on Mobile Computing</i> , 2010 , 9, 913-926	4.6	50
113	An Application-Level Data Transparent Authentication Scheme without Communication Overhead. <i>IEEE Transactions on Computers</i> , 2010 , 59, 943-954	2.5	3
112	Cyber SA: Situational Awareness for Cyber Defense. Advances in Information Security, 2010 , 3-13	0.7	58
111	Topological Vulnerability Analysis. Advances in Information Security, 2010, 139-154	0.7	37
110	Tracking Skype VoIP Calls Over The Internet 2010 ,		7
109	LH*RE: A Scalable Distributed Data Structure with Recoverable Encryption 2010 ,		6
108	QoP and QoS Policy Cognizant Module Composition 2010,		1
107	Providing Witness Anonymity Under Peer-to-Peer Settings. <i>IEEE Transactions on Information Forensics and Security</i> , 2010 , 5, 324-336	8	4
106	Access control for smarter healthcare using policy spaces. <i>Computers and Security</i> , 2010 , 29, 848-858	4.9	42
105	Providing Mobile Users Anonymity in Hybrid Networks. Lecture Notes in Computer Science, 2010, 540-55	57 0.9	5

(2008-2009)

104	2009,		8
103	Evaluating privacy threats in released database views by symmetric indistinguishability. <i>Journal of Computer Security</i> , 2009 , 17, 5-42	0.8	1
102	Privacy-preserving robust data aggregation in wireless sensor networks. <i>Security and Communication Networks</i> , 2009 , 2, 195-213	1.9	42
101	Secure median computation in wireless sensor networks. <i>Ad Hoc Networks</i> , 2009 , 7, 1448-1462	4.8	4
100	Preserving Anonymity of Recurrent Location-Based Queries 2009,		16
99	Privacy-Aware Proximity Based Services 2009 ,		45
98	ProvidentHider: An Algorithm to Preserve Historical k-Anonymity in LBS 2009 ,		13
97	Advances in Topological Vulnerability Analysis 2009,		31
96	2009,		34
95	Enforcing Confidentiality Constraints on Sensitive Databases with Lightweight Trusted Clients. <i>Lecture Notes in Computer Science</i> , 2009 , 225-239	0.9	14
94	Anonymity and Historical-Anonymity in Location-Based Services. <i>Lecture Notes in Computer Science</i> , 2009 , 1-30	0.9	25
93	Privacy Preservation over Untrusted Mobile Networks. <i>Lecture Notes in Computer Science</i> , 2009 , 84-105	0.9	11
92	L-Cover: Preserving Diversity by Anonymity. Lecture Notes in Computer Science, 2009, 158-171	0.9	3
91	Keep a Few: Outsourcing Data While Maintaining Confidentiality. <i>Lecture Notes in Computer Science</i> , 2009 , 440-455	0.9	48
90	Measuring network security using dynamic bayesian network 2008,		114
89	Detecting VoIP Floods Using the Hellinger Distance. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2008 , 19, 794-805	3.7	92
88	Controlled Information Sharing in Collaborative Distributed Query Processing 2008,		13
87	Implementing interactive analysis of attack graphs using relational databases. <i>Journal of Computer Security</i> , 2008 , 16, 419-437	0.8	15

86	Assessing query privileges via safe and efficient permission composition 2008,		7
85	Topological Vulnerability Analysis: A Powerful New Approach For Network Attack Prevention, Detection, and Response. <i>Statistical Science and Interdisciplinary Research</i> , 2008 , 285-305		17
84	Securely computing an approximate median in wireless sensor networks 2008,		12
83	Optimal IDS Sensor Placement and Alert Prioritization Using Attack Graphs. <i>Journal of Network and Systems Management</i> , 2008 , 16, 259-275	2.1	61
82	Preserving confidentiality of security policies in data outsourcing 2008,		21
81	Damage Quarantine and Recovery in Data Processing Systems 2008 , 383-407		
80	How Anonymous Is k-Anonymous? Look at Your Quasi-ID. Lecture Notes in Computer Science, 2008, 1-15	0.9	3
79	Vulnerability-Centric Alert Correlation 2008 , 279-304		
78	Regulating Exceptions in Healthcare Using Policy Spaces. Lecture Notes in Computer Science, 2008, 254-26	67 9	11
77	An Attack Graph-Based Probabilistic Security Metric. <i>Lecture Notes in Computer Science</i> , 2008 , 283-296	0.9	127
76	Fragmentation and Encryption to Enforce Privacy in Data Storage. <i>Lecture Notes in Computer Science</i> , 2007 , 171-186	0.9	48
75	Information disclosure under realistic assumptions 2007,		37
74	Chaining watermarks for detecting malicious modifications to streaming data. <i>Information Sciences</i> , 2007 , 177, 281-298	7.7	49
73	Anonymity and Diversity in LBS: A Preliminary Investigation 2007,		6
72	A data outsourcing architecture combining cryptography and access control 2007,		57
71	Trust management services in relational databases 2007,		6
70	Trusted Recovery. Advances in Information Security, 2007 , 59-94	0.7	3
69	Efficient Distributed Detection of Node Replication Attacks in Sensor Networks 2007,		42

68	Toward measuring network security using attack graphs 2007 ,		68
67	Can-Follow Concurrency Control. <i>IEEE Transactions on Computers</i> , 2007 , 56, 1425-1430	2.5	2
66	Measuring the Overall Security of Network Configurations Using Attack Graphs. <i>Lecture Notes in Computer Science</i> , 2007 , 98-112	0.9	58
65	Using attack graphs for correlating, hypothesizing, and predicting intrusion alerts. <i>Computer Communications</i> , 2006 , 29, 2917-2933	5.1	120
64	A weakest-adversary security metric for network configuration security analysis 2006,		8o
63	Attack-resilient hierarchical data aggregation in sensor networks 2006,		27
62	Redirection policies for mission-based information sharing 2006,		3
61	LEAP+. ACM Transactions on Sensor Networks, 2006 , 2, 500-528	2.9	327
60	V-COPS: A Vulnerability-Based Cooperative Alert Distribution System. <i>Proceedings of the Computer Security Applications Conference</i> , 2006 ,		1
59	Fast Detection of Denial-of-Service Attacks on IP Telephony. <i>IEEE International Workshop on Quality of Service</i> , 2006 ,		27
58	Looking into the seeds of time: Discovering temporal patterns in large transaction sets. <i>Information Sciences</i> , 2006 , 176, 1003-1031	7.7	17
57	A fragile watermarking scheme for detecting malicious modifications of database relations. <i>Information Sciences</i> , 2006 , 176, 1350-1378	7.7	60
56	Unauthorized inferences in semistructured databases. <i>Information Sciences</i> , 2006 , 176, 3269-3299	7.7	6
55	Minimum-cost network hardening using attack graphs. Computer Communications, 2006, 29, 3812-3824	5.1	156
54	Data warehousing and data mining techniques for intrusion detection systems. <i>Distributed and Parallel Databases</i> , 2006 , 20, 149-166	0.9	18
53	Modeling and assessing inference exposure in encrypted databases. <i>ACM Transactions on Information and System Security</i> , 2005 , 8, 119-152		90
52	Topological Analysis of Network Attack Vulnerability 2005 , 247-266		105
51	Policies, Models, and Languages for Access Control. <i>Lecture Notes in Computer Science</i> , 2005 , 225-237	0.9	23

Key management for multi-user encrypted databases 2005, 50 48 A Hierarchical Release Control Policy Framework 2005, 121-137 49 Protecting Privacy Against Location-Based Personal Identification. Lecture Notes in Computer 48 0.9 160 Science, **2005**, 185-199 An Efficient and Unified Approach to Correlating, Hypothesizing, and Predicting Intrusion Alerts. 0.9 18 47 Lecture Notes in Computer Science, 2005, 247-266 Cardinality-based inference control in data cubes*. Journal of Computer Security, 2004, 12, 655-692 46 0.8 28 Managing attack graph complexity through visual hierarchical aggregation 2004, 45 131 Reasoning with advanced policy rules and its application to access control. International Journal on 1.4 1 44 Digital Libraries, **2004**, 4, 156-170 A logic-based framework for attribute based access control 2004, 43 145 Enabling the sharing of neuroimaging data through well-defined intermediate levels of visibility. 42 7.9 12 Neurolmage, 2004, 22, 1646-56 41 A Flexible Authorization Framework for E-Commerce. Lecture Notes in Computer Science, 2004, 336-345 0.9 Balancing confidentiality and efficiency in untrusted relational DBMSs 2003, 40 129 A checksum-based corruption detection technique1. Journal of Computer Security, 2003, 11, 315-329 0.8 39 Provisions and Obligations in Policy Rule Management. Journal of Network and Systems 38 38 2.1 Management, 2003, 11, 351-372 Discovering calendar-based temporal association rules. Data and Knowledge Engineering, 2003, 44, 193-218 87 37 Design and implementation of a decentralized prototype system for detecting distributed attacks. 8 36 5.1 Computer Communications, 2002, 25, 1374-1391 Solving multi-granularity temporal constraint networks. Artificial Intelligence, 2002, 140, 107-152 3.6 35 32 Temporal Reasoning in Workflow Systems. Distributed and Parallel Databases, 2002, 11, 269-306 0.9 64 34 An Algebraic Representation of Calendars. Annals of Mathematics and Artificial Intelligence, 2002, 0.8 38 33 36, 5-38

32	The inference problem. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2002 , 4, 6-11	4.6	155
31	Provisions and Obligations in Policy Management and Security Applications 2002, 502-513		52
30	An Architecture for Anomaly Detection. Advances in Information Security, 2002, 63-76	0.7	6
29	ADAM. SIGMOD Record, 2001 , 30, 15-24	1.1	140
28	Detecting Novel Network Intrusions Using Bayes Estimators 2001,		127
27	Flexible support for multiple access control policies. <i>ACM Transactions on Database Systems</i> , 2001 , 26, 214-260	1.6	382
26	Abstraction-based intrusion detection in distributed environments. <i>ACM Transactions on Information and System Security</i> , 2001 , 4, 407-452		38
25	Multilevel secure transaction processing1. <i>Journal of Computer Security</i> , 2001 , 9, 165-195	0.8	2
24	Provisional Authorizations. Advances in Information Security, 2001, 133-159	0.7	36
23	Rewriting Histories: Recovering from Malicious Transactions. <i>Distributed and Parallel Databases</i> , 2000 , 8, 7-40	0.9	55
22	Flexible Transaction Dependencies in Database Systems. <i>Distributed and Parallel Databases</i> , 2000 , 8, 399-446	0.9	2
21	Intrusion confinement by isolation in information systems. <i>Journal of Computer Security</i> , 2000 , 8, 243-2	. 79 .8	14
20	Time Granularities in Databases, Data Mining, and Temporal Reasoning 2000,		111
19	A general framework for time granularity and its application to temporal reasoning. <i>Annals of Mathematics and Artificial Intelligence</i> , 1998 , 22, 29-58	0.8	43
18	Exploring steganography: Seeing the unseen. <i>Computer</i> , 1998 , 31, 26-34	1.6	537
17	TEMPORAL MEDIATORS: SUPPORTING UNIFORM ACCESSES TO HETEROGENEOUS TEMPORAL INFORMATION. <i>International Journal on Artificial Intelligence Tools</i> , 1998 , 07, 319-339	0.9	1
16	A semantic-based transaction processing model for multilevel transactions1. <i>Journal of Computer Security</i> , 1998 , 6, 181-217	0.8	3
15	Logical design for temporal databases with multiple granularities. <i>ACM Transactions on Database Systems</i> , 1997 , 22, 115-170	1.6	68

14	A unified framework for enforcing multiple access control policies. SIGMOD Record, 1997, 26, 474-485	1.1	26
13	A unified framework for enforcing multiple access control policies 1997,		122
12	Database security and privacy. ACM Computing Surveys, 1996, 28, 129-131	13.4	14
11	Managing security and privacy of information. ACM Computing Surveys, 1996, 28, 79	13.4	3
10	Semantic assumptions and query evaluation in temporal databases. <i>SIGMOD Record</i> , 1995 , 24, 257-268	1.1	
9	Achieving Stricter Correctness Requirements in Multilevel Secure Database Management Systems*. Journal of Computer Security, 1993 , 2, 311-351	0.8	1
8	Toward a multilevel secure relational data model. SIGMOD Record, 1991, 20, 50-59	1.1	21
7	Multiple coordinated views for network attack graphs		15
6	Efficient minimum-cost network hardening via exploit dependency graphs		70
5	Establishing pairwise keys for secure communication in ad hoc networks: a probabilistic approach		7
4	Efficient Distributed Detection of Node Replication Attacks in Sensor Networks		6
3	An authorization model for query execution in the cloud. VLDB Journal,1	3.9	О
2	Maintaining the level of operational effectiveness of a CSOC under adverse conditions. <i>International Journal of Information Security</i> ,1	2.8	
1	Intrusion-Detection Systems403-420		