Bruno Zelic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717616/publications.pdf Version: 2024-02-01

RDUNO ZEUC

#	Article	IF	CITATIONS
1	An enhanced composting process with bioaugmentation: Mathematical modelling and process optimization. Waste Management and Research, 2022, 40, 745-753.	2.2	3
2	Model-to-model: Comparison of mathematical process models of lipase catalysed biodiesel production in a microreactor. Computers and Chemical Engineering, 2021, 145, 107200.	2.0	9
3	Continuous Integrated Process of Biodiesel Production and Purification—The End of the Conventional Two-Stage Batch Process?. Energies, 2021, 14, 403.	1.6	10
4	The power of microsystem technology in the food industry – Going small makes it better. Innovative Food Science and Emerging Technologies, 2021, 68, 102613.	2.7	9
5	Photocatalytic Oxygenation of Heterostilbenes—Batch versus Microflow Reactor. Catalysts, 2021, 11, 395.	1.6	4
6	Integrated microsystems for lipase-catalyzed biodiesel production and glycerol removal by extraction or ultrafiltration. Renewable Energy, 2021, 180, 213-221.	4.3	18
7	Sustainable Production of Lipase from <i>Thermomyces lanuginosus</i> : Process Optimization and Enzyme Characterization. Industrial & amp; Engineering Chemistry Research, 2020, 59, 21144-21154.	1.8	19
8	Purification of biodiesel produced by lipase catalysed transesterification by ultrafiltration: Selection of membranes and analysis of membrane blocking mechanisms. Renewable Energy, 2020, 159, 642-651.	4.3	29
9	A New Spectrophotometric Assay for Measuring the Hydrolytic Activity of Lipase from <i>Thermomyces lanuginosus</i> : A Kinetic Modeling. ACS Sustainable Chemistry and Engineering, 2020, 8, 4818-4826.	3.2	8
10	Production, characterisation and immobilization of laccase for an efficient aniline-based dye decolourization. Journal of Water Process Engineering, 2020, 36, 101327.	2.6	16
11	Biodiesel purification in microextractors: Choline chloride based deep eutectic solvents vs water. Separation and Purification Technology, 2020, 242, 116783.	3.9	27
12	Transesterification in Microreactors—Overstepping Obstacles and Shifting Towards Biodiesel Production on a Microscale. Micromachines, 2020, 11, 457.	1.4	17
13	Membranska filtracija kao ekoloÅ _i ki prihvatljiva metoda proÄiÅjćavanja sirovog biodizela. Kemija U Industriji, 2020, 69, 175-181.	0.2	7
14	Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on By-Products from Cold-Pressing Oil Production. Processes, 2019, 7, 465.	1.3	18
15	Application of Tubular Meso- and Micro-reactors in Organic Synthesis and Photochemistry – Go With the Flow!. Kemija U Industriji, 2019, 68, 477-485.	0.2	0
16	Kinetic Parameter Estimation and Mathematical Modelling of Lipase Catalysed Biodiesel Synthesis in a Microreactor. Micromachines, 2019, 10, 759.	1.4	16
17	Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. New Biotechnology, 2018, 47, 80-88.	2.4	27
18	Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresource Technology, 2018, 253, 220-226.	4.8	71

BRUNO ZELIC

#	Article	IF	CITATIONS
19	Introduction to environmental engineering. ChemistrySelect, 2018, 3, .	0.7	3
20	Synergy of Microtechnology and Biotechnology: Microreactors as an Effective Tool for Biotransformation Processes. Food Technology and Biotechnology, 2018, 56, 464-479.	0.9	21
21	10. Modeling of environmental processes. , 2018, , 317-356.		0
22	1. Introduction to environmental engineering. , 2018, , 1-16.		0
23	Proximate analysis of coldâ€press oil cakes after biological treatment with <i>Trametes versicolor</i> and <i>Humicola grisea</i> . Engineering in Life Sciences, 2018, 18, 924-931.	2.0	11
24	Microstructured devices for biodiesel production by transesterification. Biomass Conversion and Biorefinery, 2018, 8, 1005-1020.	2.9	18
25	IMTB 2017 Conference: At the intersection of microfluidics and biotechnology. New Biotechnology, 2018, 47, iii-iv.	2.4	0
26	Potential Use of Apple Polyphenol Oxidase for Bioremediation of Phenolic Contaminants. Kemija U Industriji, 2018, 67, 109-116.	0.2	2
27	Continuous flow-ultrasonic synergy in click reactions for the synthesis of novel 1,2,3-triazolyl appended 4,5-unsaturated <scp>l</scp> -ascorbic acid derivatives. RSC Advances, 2017, 7, 791-800.	1.7	17
28	Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems. Applied Biochemistry and Biotechnology, 2017, 182, 1575-1590.	1.4	20
29	Mathematical modelling of polyphenol extraction by aqueous two-phase system in continuously operated macro- and micro-extractors. Separation Science and Technology, 2017, 52, 864-875.	1.3	6
30	Fully integrated biotransformation of fumaric acid by permeabilized baker's yeast cells with in situ separation of L-malic acid using ultrafiltration, acidification and electrodialysis. Biochemical Engineering Journal, 2017, 125, 221-229.	1.8	11
31	Biodegradation of imidacloprid by composting process. Chemical Papers, 2017, 71, 13-20.	1.0	6
32	Biotechnology on a small scale – Microreactors, future or just passing trend?. Journal of Biotechnology, 2017, 256, S11.	1.9	0
33	Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors. Journal of Cleaner Production, 2017, 166, 519-529.	4.6	66
34	Recovery of Phenolic Acid and Enzyme Production from Corn Silage Biologically Treated by Trametes versicolor. Applied Biochemistry and Biotechnology, 2017, 181, 948-960.	1.4	19
35	Biogas Production from Brewery Yeast Using an Anaerobic Sequencing Batch Reactor (ASBR). Food Technology and Biotechnology, 2017, 55, 187-196.	0.9	17
36	Implementation of Microreactor Technology in Biotechnology — IMTB 2015 Conference. Journal of Flow Chemistry, 2016, 6, 1-2.	1.2	1

BRUNO ZELIC

#	Article	IF	CITATIONS
37	NADH oxidation in a microreactor with an oscillating magnetic field. Journal of Flow Chemistry, 2016, 6, 27-32.	1.2	8
38	Corn forage biological pretreatment by <i>Trametes versicolor</i> in a tray bioreactor. Waste Management and Research, 2016, 34, 802-809.	2.2	26
39	Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor. Korean Journal of Chemical Engineering, 2015, 32, 1037-1045.	1.2	5
40	Anaerobic Biodegradation of Raw and Pre-treated Brewery Spent Grain Utilizing Solid State Anaerobic Digestion. Acta Chimica Slovenica, 2015, 62, 818-827.	0.2	26
41	ADH-catalysed hexanol oxidation with fully integrated NADH regeneration performed in microreactors connected in series. RSC Advances, 2014, 4, 41714-41721.	1.7	16
42	Laccase Inhibiting Activity of Some Coumarin Derivatives. Letters in Organic Chemistry, 2014, 11, 583-589.	0.2	5
43	Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor. Biotechnology and Bioprocess Engineering, 2013, 18, 686-696.	1.4	28
44	NADH oxidation in a microreactor catalysed by ADH immobilised on <i>γ</i> -Fe ₂ O ₃ nanoparticles. Green Processing and Synthesis, 2013, 2, 569-578.	1.3	11
45	Modelling of the whey and cow manure co-digestion process. Waste Management and Research, 2013, 31, 353-360.	2.2	17
46	Bioproduction of Food Additives Hexanal and Hexanoic Acid in a Microreactor. Applied Biochemistry and Biotechnology, 2013, 171, 2273-2284.	1.4	20
47	<scp>ADH</scp> based <scp>NAD</scp> ⁺ regeneration in a microreactor. Journal of Chemical Technology and Biotechnology, 2013, 88, 1721-1729.	1.6	9
48	NAD+ regeneration in a microreactor using permeabilized baker's yeast cells. Biochemical Engineering Journal, 2013, 77, 88-96.	1.8	12
49	Implementation of Microreactor Technology in Biotechnology (IMTB 2013). Green Processing and Synthesis, 2012, 1, .	1.3	0
50	Application of microreactors in medicine and biomedicine. Journal of Applied Biomedicine, 2012, 10, 137-153.	0.6	75
51	Optimization of biogas production from co-digestion of whey and cow manure. Biotechnology and Bioprocess Engineering, 2012, 17, 1284-1293.	1.4	15
52	Modeling and kinetic parameter estimation of alcohol dehydrogenaseâ€catalyzed hexanol oxidation in a microreactor. Engineering in Life Sciences, 2012, 12, 49-56.	2.0	22
53	Optimization of Laccase Production by Trametes versicolor Cultivated on Industrial Waste. Applied Biochemistry and Biotechnology, 2012, 166, 36-46.	1.4	36
54	Biotransformation in a microreactor: New method for production of hexanal. Biotechnology and Bioprocess Engineering, 2011, 16, 495-504.	1.4	13

Bruno Zelic

#	Article	IF	CITATIONS
55	Mathematical model for Trametes versicolor growth in submerged cultivation. Bioprocess and Biosystems Engineering, 2010, 33, 749-758.	1.7	11
56	Application of Clay for Petrochemical Wastewater Pretreatment. Water Quality Research Journal of Canada, 2009, 44, 399-406.	1.2	1
57	Metabolomics for biotransformations: Intracellular redox cofactor analysis and enzyme kinetics offer insight into whole cell processes. Biotechnology and Bioengineering, 2009, 104, 251-260.	1.7	22
58	Modelling of laccase-catalyzed l-DOPA oxidation in a microreactor. Chemical Engineering Journal, 2009, 149, 383-388.	6.6	45
59	Comparison of the l-malic acid production by isolated fumarase and fumarase in permeabilized baker's yeast cells. Enzyme and Microbial Technology, 2007, 41, 605-612.	1.6	28
60	Mathematical Modeling of Size Exclusion Chromatography. Engineering in Life Sciences, 2006, 6, 163-169.	2.0	18
61	Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models. Bioprocess and Biosystems Engineering, 2006, 29, 39-47.	1.7	13
62	Process development and modeling of pyruvate recovery from a model solution and fermentation broth. Desalination, 2005, 174, 267-276.	4.0	26
63	Modeling and Analysis of a New Process for Pyruvate Production. Industrial & Engineering Chemistry Research, 2005, 44, 3124-3133.	1.8	10
64	Process strategies to enhance pyruvate production with recombinantEscherichia coli: From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnology and Bioengineering, 2004, 85, 638-646.	1.7	83
65	Development of Aqueous Two-Phase Systems Based on Deep Eutectic Solvents for Continuous Protein Extraction in A Microextractor. , 0, , .		0
66	Purification of Biodiesel Produced by Lipase Catalysed Transesterification by Two-Phase Systems Based on Deep Eutectic Solvents in a Microextractor: Selection of Solvents and Process Optimization. , 0, , .		0
67	Photocatalytic oxygenation of heterostilbenes in microflow reactors. , 0, , .		0
68	Improvement of Biowaste Composting Efficiency using Sphingobacterium spiritivorum. , 0, , .		0