
Cliona M Rooney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. Journal of Clinical Investigation, 2011, 121, 1822-1826.	3.9	876
2	Long–term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene–modified virus–specific T lymphocytes. Nature Medicine, 1996, 2, 551-555.	15.2	820
3	Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor–Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. Journal of Clinical Oncology, 2015, 33, 1688-1696.	0.8	778
4	Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood, 2010, 115, 925-935.	0.6	721
5	HER2-Specific Chimeric Antigen Receptor–Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncology, 2017, 3, 1094.	3.4	608
6	Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine, 2006, 12, 1160-1166.	15.2	536
7	Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 2014, 123, 3750-3759.	0.6	534
8	Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood, 2013, 121, 5113-5123.	0.6	507
9	Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood, 2013, 122, 2965-2973.	0.6	470
10	Sustained Complete Responses in Patients With Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. Journal of Clinical Oncology, 2014, 32, 798-808.	0.8	433
11	A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular Therapy, 2005, 12, 933-941.	3.7	426
12	CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 2017, 25, 2214-2224.	3.7	378
13	Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease. Journal of Experimental Medicine, 2004, 200, 1623-1633.	4.2	371
14	Off-the-Shelf Virus-Specific T Cells to Treat BK Virus, Human Herpesvirus 6, Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections After Allogeneic Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 2017, 35, 3547-3557.	0.8	367
15	Activity of Broad-Spectrum T Cells as Treatment for AdV, EBV, CMV, BKV, and HHV6 Infections after HSCT. Science Translational Medicine, 2014, 6, 242ra83.	5.8	357
16	Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood, 2009, 114, 4283-4292.	0.6	311
17	Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood, 2002, 99, 3179-3187.	0.6	310
18	Clinical and immunological responses after CD30-specific chimeric antigen receptor–redirected lymphocytes. Journal of Clinical Investigation, 2017, 127, 3462-3471.	3.9	301

#	Article	IF	CITATIONS
19	Infusion of Cytotoxic T Cells for the Prevention and Treatment of Epstein-Barr Virus–Induced Lymphoma in Allogeneic Transplant Recipients. Blood, 1998, 92, 1549-1555.	0.6	269
20	Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood, 2007, 110, 2838-2845.	0.6	266
21	Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood, 2015, 125, 3905-3916.	0.6	260
22	An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001, 97, 835-843.	0.6	249
23	Treatment of solid organ transplant recipients with autologous Epstein Barr virus–specific cytotoxic T lymphocytes (CTLs). Blood, 2006, 108, 2942-2949.	0.6	241
24	Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. Journal of Clinical Oncology, 2020, 38, 3794-3804.	0.8	235
25	T-cell therapy in the treatment of post-transplant lymphoproliferative disease. Nature Reviews Clinical Oncology, 2012, 9, 510-519.	12.5	230
26	Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9. Cell Reports, 2016, 17, 1453-1461.	2.9	223
27	Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Molecular Therapy, 2017, 25, 249-258.	3.7	217
28	Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells. Cancer Discovery, 2017, 7, 1238-1247.	7.7	204
29	Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent. Cell Reports, 2017, 21, 17-26.	2.9	203
30	Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Molecular Therapy, 2013, 21, 2113-2121.	3.7	200
31	Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood, 2015, 125, 4103-4113.	0.6	188
32	InÂVivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Molecular Therapy, 2018, 26, 2727-2737.	3.7	180
33	NK Cells Expressing a Chimeric Activating Receptor Eliminate MDSCs and Rescue Impaired CAR-T Cell Activity against Solid Tumors. Cancer Immunology Research, 2019, 7, 363-375.	1.6	180
34	Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood, 2014, 123, 3895-3905.	0.6	161
35	Reversal of Tumor Immune Inhibition Using a Chimeric Cytokine Receptor. Molecular Therapy, 2014, 22, 1211-1220.	3.7	145
36	Fine-tuning the CAR spacer improves T-cell potency. Oncolmmunology, 2016, 5, e1253656.	2.1	137

#	Article	IF	CITATIONS
37	Tumor-Specific T-Cells Engineered to Overcome Tumor Immune Evasion Induce Clinical Responses in Patients With Relapsed Hodgkin Lymphoma. Journal of Clinical Oncology, 2018, 36, 1128-1139.	0.8	137
38	Phase 1 Study of Intratumoral Pexa-Vec (JX-594), an Oncolytic and Immunotherapeutic Vaccinia Virus, in Pediatric Cancer Patients. Molecular Therapy, 2015, 23, 602-608.	3.7	132
39	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	1.5	117
40	Phase 1 clinical trial of adoptive immunotherapy using "off-the-shelf―activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy, 2017, 19, 1225-1232.	0.3	117
41	Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells. Molecular Therapy, 2014, 22, 623-633.	3.7	113
42	Treatment of Acute Myeloid Leukemia with T Cells Expressing Chimeric Antigen Receptors Directed to C-type Lectin-like Molecule 1. Molecular Therapy, 2017, 25, 2202-2213.	3.7	109
43	CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood, 2021, 138, 318-330.	0.6	98
44	CMV-specific T cells generated from naÃ ⁻ ve T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	5.8	93
45	Generation of Epstein-Barr virus–specific cytotoxic T lymphocytes resistant to the immunosuppressive drug tacrolimus (FK506). Blood, 2009, 114, 4784-4791.	0.6	86
46	Expanded Cytotoxic T-cell Lymphocytes Target the Latent HIV Reservoir. Journal of Infectious Diseases, 2015, 212, 258-263.	1.9	86
47	Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: A potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. International Journal of Cancer, 2001, 93, 706-713.	2.3	80
48	Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Molecular Therapy, 2011, 19, 2258-2268.	3.7	80
49	Vaccination Targeting Native Receptors to Enhance the Function and Proliferation of Chimeric Antigen Receptor (CAR)-Modified T Cells. Clinical Cancer Research, 2017, 23, 3499-3509.	3.2	76
50	Optimizing the production of suspension cells using the G-Rex "M―series. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14015.	1.8	71
51	Expansion and Homing of Adoptively Transferred Human Natural Killer Cells in Immunodeficient Mice Varies with Product Preparation and InÂVivo Cytokine Administration: Implications for Clinical Therapy. Biology of Blood and Marrow Transplantation, 2014, 20, 1252-1257.	2.0	71
52	Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia, 2020, 34, 3310-3322.	3.3	64
53	Clinical Grade Purification and Expansion of Natural Killer Cells. Critical Reviews in Oncogenesis, 2014, 19, 121-132.	0.2	56
54	Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Molecular Therapy - Methods and Clinical Development, 2018, 8, 131-140.	1.8	49

#	Article	IF	CITATIONS
55	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	0.6	49
56	Adoptive T-Cell Immunotherapy. Current Topics in Microbiology and Immunology, 2015, 391, 427-454.	0.7	48
57	Broadly-specific Cytotoxic T Cells Targeting Multiple HIV Antigens Are Expanded From HIV+ Patients: Implications for Immunotherapy. Molecular Therapy, 2015, 23, 387-395.	3.7	46
58	Evaluating the potential for undesired genomic effects of the <i>piggyBac</i> transposon system in human cells. Nucleic Acids Research, 2015, 43, 1770-1782.	6.5	44
59	Autologous HER2 CMV bispecific CAR T cells for progressive glioblastoma: Results from a phase I clinical trial Journal of Clinical Oncology, 2015, 33, 3008-3008.	0.8	44
60	Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome–positive acute lymphoblastic leukemia. Cytotherapy, 2014, 16, 1257-1269.	0.3	42
61	Comprehensive Approach for Identifying the T Cell Subset Origin of CD3 and CD28 Antibody–Activated Chimeric Antigen Receptor–Modified T Cells. Journal of Immunology, 2017, 199, 348-362.	0.4	41
62	Peripheral Blood–Derived Virus-Specific Memory Stem T Cells Mature to Functional Effector Memory Subsets with Self-Renewal Potency. Journal of Immunology, 2015, 194, 5559-5567.	0.4	36
63	T lymphocytes targeting native receptors. Immunological Reviews, 2014, 257, 39-55.	2.8	34
64	Antigen-specific T cell therapies for cancer: Figure 1 Human Molecular Genetics, 2015, 24, R67-R73.	1.4	32
65	T-Cell Receptor Stimulation Enhances the Expansion and Function of CD19 Chimeric Antigen Receptor–Expressing T Cells. Clinical Cancer Research, 2019, 25, 7340-7350.	3.2	32
66	Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma Journal of Clinical Oncology, 2017, 35, 10508-10508.	0.8	32
67	T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. Journal of Clinical Oncology, 2021, 39, 1415-1425.	0.8	30
68	Transfer of EBV-specific CTL to prevent EBV lymphoma post bone marrow transplant. , 1999, 14, 154-156.		29
69	T ell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	1.2	29
70	Systemic Inflammatory Response Syndrome After Administration of Unmodified T Lymphocytes. Molecular Therapy, 2014, 22, 1134-1138.	3.7	28
71	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	3.7	28
72	Strategies for enhancing adoptive T-cell immunotherapy against solid tumors using engineered cytokine signaling and other modalities. Expert Opinion on Biological Therapy, 2018, 18, 653-664.	1.4	26

#	Article	IF	CITATIONS
73	Safety and Clinical Efficacy of Rapidly-Generated Trivirus-Directed T Cells After Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2012, 120, 223-223.	0.6	25
74	Administration of Neomycin Resistance Gene Marked EBV Specific Cytotoxic T-Lymphocytes to Patients with Relapsed EBV-Positive Hodgkin Disease. Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas. Human Gene Therapy, 1998, 9, 1237-1250.	1.4	24
75	A New Method for Reactivating and Expanding T Cells Specific for Rhizopus oryzae. Molecular Therapy - Methods and Clinical Development, 2018, 9, 305-312.	1.8	24
76	Direct Comparison of In Vivo Fate of Second and Third-Generation CD19-Specific Chimeric Antigen Receptor (CAR)-T Cells in Patients with B-Cell Lymphoma: Reversal of Toxicity from Tonic Signaling. Blood, 2016, 128, 1851-1851.	0.6	22
77	Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy. Methods in Molecular Biology, 2016, 1441, 195-202.	0.4	20
78	CD30-Chimeric Antigen Receptor (CAR) T Cells for Therapy of Hodgkin Lymphoma (HL). Blood, 2018, 132, 680-680.	0.6	20
79	Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. Molecular Therapy - Oncolytics, 2014, 1, 14008.	2.0	19
80	Modeling cytokine release syndrome. Nature Medicine, 2018, 24, 705-706.	15.2	18
81	A strategy to protect off-the-shelf cell therapy products using virus-specific T-cells engineered to eliminate alloreactive T-cells. Journal of Translational Medicine, 2019, 17, 240.	1.8	18
82	Adoptive T-Cell Therapy for Epstein-Barr Virus–Related Lymphomas. Journal of Clinical Oncology, 2021, 39, 514-524.	0.8	18
83	EBV-Directed T Cell Therapeutics for EBV-Associated Lymphomas. Methods in Molecular Biology, 2017, 1532, 255-265.	0.4	16
84	Transposon-modified antigen-specific T lymphocytes for sustained therapeutic protein delivery in vivo. Nature Communications, 2018, 9, 1325.	5.8	16
85	Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy, 2019, 21, 212-223.	0.3	16
86	Long-term follow-up for the development of subsequent malignancies in patients treated with genetically modified IECs. Blood, 2022, 140, 16-24.	0.6	14
87	Donor-derived multiple leukemia antigen–specific T-cell therapy to prevent relapse after transplantÂin patients with ALL. Blood, 2022, 139, 2706-2711.	0.6	13
88	Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells. Frontiers in Medicine, 2018, 5, 343.	1.2	12
89	Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: results of a multicenter study. Annals of Hematology, 2021, 100, 2529-2539.	0.8	12
90	A Costimulatory CAR Improves TCR-based Cancer Immunotherapy. Cancer Immunology Research, 2022, 10, 512-524.	1.6	12

#	Article	IF	CITATIONS
91	Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model. PLoS ONE, 2015, 10, e0140744.	1.1	11
92	Moving Successful Virus-specific T-cell Therapy for Hematopoietic Stem Cell Recipients to Late Phase Clinical Trials. Molecular Therapy - Nucleic Acids, 2012, 1, e55.	2.3	10
93	Identification of protective T-cell antigens for smallpox vaccines. Cytotherapy, 2020, 22, 642-652.	0.3	10
94	Can Treg elimination enhance NK cell therapy for AML?. Blood, 2014, 123, 3848-3849.	0.6	7
95	Current challenges for CAR Tâ€cell therapy of acute myeloid leukemia. Transfusion, 2019, 59, 1171-1173.	0.8	7
96	Immune-Based Therapies Targeting Mage-A4 for Relapsed/Refractory Hodgkin's Lymphoma After Stem Cell Transplant Blood, 2009, 114, 4089-4089.	0.6	7
97	New insights into EBV-associated post-transplant lymphoproliferative disease. Lancet, The, 2003, 361, 192-193.	6.3	6
98	Clinical Responses In Patients Infused With T Lymphocytes Redirected To Target κ-Light Immunoglobulin Chain. Blood, 2013, 122, 506-506.	0.6	6
99	Safety and Efficacy of Off-the-Shelf CD30.CAR-Modified Epstein-Barr Virus-Specific T Cells in Patients with CD30-Positive Lymphoma. Blood, 2021, 138, 1763-1763.	0.6	6
100	A Bank of CD30.CAR-Modified, Epstein-Barr Virus-Specific T Cells That Lacks Host Reactivity and Resists Graft Rejection for Patients with CD30-Positive Lymphoma. Blood, 2020, 136, 16-16.	0.6	6
101	Multi-antigen-targeted T-cell therapy to treat patients with relapsed/refractory breast cancer. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592211071.	1.4	6
102	Safety of Multiple Doses of CAR T Cells. Blood, 2015, 126, 4425-4425.	0.6	5
103	CD70-Specific CAR T Cells Have Potent Activity Against Acute Myeloid Leukemia (AML) without HSC Toxicity. Blood, 2019, 134, 1932-1932.	0.6	3
104	T-Cells Redirected Against CD70 for the Immunotherapy of Hematological Malignancies Blood, 2007, 110, 2757-2757.	0.6	3
105	Counting EBV and T cells to predict PTLD. Blood, 2003, 101, 4227-4228.	0.6	2
106	Adoptive immunotherapy for herpesviruses. , 2007, , 1318-1331.		2
107	Adoptive transfer of virus-directed T cells: will this fly for flu?. Cytotherapy, 2012, 14, 133-134.	0.3	2
108	Three-Module Signaling Endo-Domain Artifical T-Cell Receptor Which Transmits CD28, OX40 and CD3-ζ Signals Enhances IL-2 Release and Proliferative Response in Transduced Primary T-Cells Blood, 2004, 104, 1747-1747.	0.6	2

#	Article	IF	CITATIONS
109	Multicenter Study of "off-the-Shelf―Third Party Virus-Specific T Cells (VSTs) to Treat Adenovirus (Adv), Cytomegalovirus (CMV) or Epstein Barr Virus (EBV) Infection After Hemopoietic Stem Cell Transplantation (HSCT). Blood, 2012, 120, 457-457.	0.6	2
110	Fresh Ex Vivo Expanded Natural Killer Cells Demonstrate Robust Proliferation in Vivo in High-Risk Relapsed Multiple Myeloma (MM) Patients. Blood, 2012, 120, 579-579.	0.6	2
111	Administration of Most Closely HLA-Matched Multivirus-Specific T Cells for the Treatment of EBV, CMV, AdV, HHV6, and BKV Post Allogeneic Hematopoietic Stem Cell Transplant. Blood, 2016, 128, 501-501.	0.6	2
112	Epstein Barr virus–positive B-cell lymphoma is highly vulnerable to MDM2 inhibitors in vivo. Blood Advances, 2022, 6, 891-901.	2.5	2
113	Harnessing the Immune System to Potentiate Oncolytics. Molecular Therapy, 2014, 22, 239-240.	3.7	1
114	The National Heart, Lung, and Blood Instituteâ€funded Production Assistance for Cellular Therapies (PACT) program: Eighteen years of cell therapy. Clinical and Translational Science, 2021, 14, 2099-2110.	1.5	1
115	Monoculture-Derived T Lymphocytes Providing Multiple Virus Specificity and Anti-Leukemia Activity for Recipients of Hematopietic Stem Cells or Umbilical Cord Blood Transplants. Blood, 2008, 112, 3909-3909.	0.6	1
116	IL15 Enhances Proliferation and Effector Function of Antigen-Specific Cytotoxic T Lymphocytes (CTLs) and Mitigates the Suppressive Action of Regulatory T Cells (Tregs) Blood, 2009, 114, 4088-4088.	0.6	1
117	Combining Oncolytic Vaccinia Virotherapy with Adoptive T Cell Therapy,. Blood, 2011, 118, 4042-4042.	0.6	1
118	Optimal Xenogeneic Adoptive Transfer of Human NK Cells: Fresh NK Cells and IL-15 Administration Are Superior to Frozen NK Cells and IL-2. Blood, 2012, 120, 346-346.	0.6	1
119	Complete Tumor Responses in Lymphoma Patients Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein Barr Virus (EBV) - Latent Membrane Proteins. Blood, 2011, 118, 956-956.	0.6	1
120	Phase 1 Clinical Trial of Adoptive Immunotherapy Using "Off-the-Shelf" Activated Natural Killer Cells (aNK) in Patients with Refractory/Relapsed Acute Myeloid Leukemia. Blood, 2016, 128, 1649-1649.	0.6	1
121	Adoptive cellular immunotherapy. , 2006, , 648-660.		0
122	Reply to S. Yuan et al. Journal of Clinical Oncology, 2014, 32, 2820-2821.	0.8	0
123	Fas Down-Modulation in Epstein Barr Virus (EBV)-Specific Cytotoxic T-Lymphocytes (CTLs) Reduces Their Sensitivity to Fas/Fasl-Induced Apoptosis Blood, 2004, 104, 2647-2647.	0.6	0
124	Retrovirus-Transduced T Cell Blasts Have Not Only Antigen-Presenting Capabilities but Also Suppressor Regulatory T Cell-Inducing Capability Blood, 2004, 104, 3855-3855.	0.6	0
125	Genetically Modified Her2-Specific T Cells Recognize Low and High Her2 Expressing Breast Cancer Cells Blood, 2005, 106, 5540-5540.	0.6	0
126	The Clinical Use of Donor-Derived Virus-Specific Cytotoxic T Lymphocytes Reactive Against Cytomegalovirus (CMV), Adenovirus and Epstein Barr Virus (EBV) Blood, 2005, 106, 81-81.	0.6	0

#	Article	IF	CITATIONS
127	The Use of Autologous LMP2-Specific Cytotoxic T Lymphocytes (CTL) for the Treatment of Relapsed EBV-Positive Hodgkin Disease and Non-Hodgkin Lymphoma Blood, 2005, 106, 773-773.	0.6	0
128	Generation and Expansion of PRAME-Specific Cytotoxic T-Lymphocytes for Adoptive T-Cell Therapy of Hematological Malignancies Blood, 2006, 108, 2205-2205.	0.6	0
129	Immune Responses Are Induced Against Side-Population B-CLL "Stem Cells ―by Patient Vaccination with hCD40L/IL2 Gene Modified Tumor Cells Blood, 2006, 108, 2552-2552.	0.6	0
130	Generation of Epstein Barr Virus Specific Cytotoxic T Lymphocytes (EBVCTLs) Resistant to the Immunosuppressive Drug Tacrolimus (FK506). Blood, 2008, 112, 3536-3536.	0.6	0
131	Complete Tumor Responses in Lymphoma Patients Who Receive Autologous Cytotoxic T Lymphocytes Targeting EBV Latent Membrane Proteins. Blood, 2008, 112, 230-230.	0.6	Ο
132	The "Side-Population―of Human Lymphoma Cells Have Increased Chemo-Resistance, Stem-Cell Like Properties and Are Potential Targets for Immunotherapy. Blood, 2008, 112, 2620-2620.	0.6	0
133	Selective Loss of a Putative Precursor Population of B-Chronic Lymphocytic Leukemia Cells Following Immunization with hCD40L/IL-2 Expressing Autologous Tumor Cells. Blood, 2008, 112, 3172-3172.	0.6	0
134	Exploiting Cytokine Secretion to Rapidly Produce Multivirus-Specific T Cells for Adoptive Immunotherapy. Blood, 2008, 112, 4594-4594.	0.6	0
135	Polyclonal PRAME-Specific Cytotoxic T Lymphocytes Generated Using Protein-Spanning Pools of Overlapping Pentadecapeptides Target Chronic Myeloid Leukemia. Blood, 2008, 112, 3899-3899.	0.6	0
136	Cytotoxic T Lymphocytes (CTL) Specific for CMV, Adenovirus, and EBV Can Be Generated From Naive T Cells for Adoptive Immunotherapy Blood, 2009, 114, 504-504.	0.6	0
137	An Inducible Caspase 9 Suicide Gene to Improve the Safety of Mesenchymal Stromal Cell Therapies Blood, 2009, 114, 1444-1444.	0.6	0
138	Adverse Events Following Infusion of T Cells for Adoptive Immunotherapy: A 10 Year Experience Blood, 2009, 114, 3212-3212.	0.6	0
139	Towards Phase 2/3 Trials for Epstein - Barr Virus (EBV)-Associated Malignancies,. Blood, 2011, 118, 4043-4043.	0.6	Ο
140	Human Papillomavirus Type 16 (HPV16) E6/E7-Specific Cytotoxic T Lymphocytes (CTLs) for Immunotherapy of HPV-Associated Malignancies. Blood, 2011, 118, 1913-1913.	0.6	0
141	EBV-Induced Lymphoproliferation. Blood, 2011, 118, SCI-9-SCI-9.	0.6	0
142	Vaccination with ΔCD40L or Flagellin Gene-Modified T Cells Activates Dendritic Cells In Vivo and Induces a Potent Anti-Tumor Immune Response. Blood, 2011, 118, 1909-1909.	0.6	0
143	Human papillomavirus type 16 (HPV16) E6/E7-specific cytotoxicÂT lymphocytes (CTL) for immunotherapy of HPV-associated cancer (Ca) Journal of Clinical Oncology, 2012, 30, 2558-2558.	0.8	0
144	Expanded Natural Killer (NK) Cells for Immunotherapy: Fresh and Made to Order. Blood, 2012, 120, 1912-1912.	0.6	0

#	Article	IF	CITATIONS
145	T Cells Expressing CD19-Specific Chimeric Antigen Receptors Are Inhibited By Indoleamine 2,3-Dioxygenase in Tumors. Blood, 2014, 124, 2434-2434.	0.6	0
146	Adoptively-Transferred EBV-Specific T Cells to Prevent or Treat EBV-Related Lymphoproliferative Disease in Allogeneic HSCT Recipients - a Single Center Experience Spanning 22 Years. Blood, 2015, 126, 1926-1926.	0.6	0
147	Fast and Efficient Gene Editing in Human Hematopoietic Cells. Blood, 2016, 128, 4704-4704.	0.6	0
148	Donor-Derived Adoptive T-Cell Therapy Targeting Multiple Tumor Associated Antigens to Prevent Post-Transplant Relapse in Patients with ALL. Blood, 2021, 138, 471-471.	0.6	0