
Yen-Han Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717451/publications.pdf Version: 2024-02-01

YEN-HAN LIN

#	Article	IF	CITATIONS
1	Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnology Advances, 2013, 31, 257-265.	6.0	218
2	False positive reduction in protein-protein interaction predictions using gene ontology annotations. BMC Bioinformatics, 2007, 8, 262.	1.2	58
3	Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus. Applied Energy, 2013, 105, 389-394.	5.1	49
4	Correlations between reduction–oxidation potential profiles and growth patterns of Saccharomyces cerevisiae during very-high-gravity fermentation. Process Biochemistry, 2010, 45, 765-770.	1.8	44
5	Development of redox potential-controlled schemes for very-high-gravity ethanol fermentation. Journal of Biotechnology, 2011, 153, 42-47.	1.9	32
6	Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. Biotechnology for Biofuels, 2012, 5, 61.	6.2	29
7	Auxostats for continuous culture research. Journal of Biotechnology, 1994, 37, 167-177.	1.9	26
8	Whole-Cell Protein Identification Using the Concept of Unique Peptides. Genomics, Proteomics and Bioinformatics, 2010, 8, 33-41.	3.0	24
9	Effect of aeration timing and interval during very-high-gravity ethanol fermentation. Process Biochemistry, 2011, 46, 1025-1028.	1.8	23
10	Bioremediation of toluene-contaminated air using an external loop airlift bioreactor. Journal of Chemical Technology and Biotechnology, 2003, 78, 406-411.	1.6	22
11	Title is missing!. Biotechnology Letters, 2002, 24, 449-453.	1.1	20
12	Improvement of very-high-gravity ethanol fermentation from sweet sorghum juice by controlling fermentation redox potential. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 302-307.	2.7	20
13	Growth of Saccharomyces cerevisiae in a chemostat under high glucose conditions. Biotechnology Letters, 2003, 25, 1151-1154.	1.1	19
14	Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. Scientific Reports, 2016, 6, 25763.	1.6	19
15	The effect of fermentation configurations and FAN supplementation on ethanol production from sorghum grains under very-high-gravity conditions. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 1-4.	2.7	18
16	Bioethanol: New opportunities for an ancient product. Advances in Bioenergy, 2019, , 1-34.	0.5	18
17	Metabolic Flux Variation of Saccharomyces cerevisiae Cultivated in a Multistage Continuous Stirred Tank Reactor Fermentation Environment. Biotechnology Progress, 2001, 17, 1055-1060.	1.3	17

Yen-Han Lin

#	Article	IF	CITATIONS
19	Metabolic heat evolution of Saccharomyces cerevisiae grown under very-high-gravity conditions. Process Biochemistry, 2008, 43, 1253-1258.	1.8	14
20	A kinetic growth model for Saccharomyces cerevisiae grown under redox potential-controlled very-high-gravity environment. Biochemical Engineering Journal, 2011, 56, 63-68.	1.8	14
21	Kinetic modeling for redox potential-controlled repeated batch ethanol fermentation using flocculating yeast. Process Biochemistry, 2015, 50, 1-7.	1.8	14
22	Ageing vessel configuration for continuous redox potential-controlled very-high-gravity fermentation. Journal of Bioscience and Bioengineering, 2011, 111, 61-66.	1.1	13
23	Redox potential-driven repeated batch ethanol fermentation under very-high-gravity conditions. Process Biochemistry, 2012, 47, 523-527.	1.8	12
24	Global gene expression analysis of <i>Saccharomyces cerevisiae</i> grown under redox potential ontrolled veryâ€highâ€gravity conditions. Biotechnology Journal, 2013, 8, 1332-1340.	1.8	11
25	Variation of fermentation redox potential during cell-recycling continuous ethanol operation. Journal of Biotechnology, 2016, 239, 68-75.	1.9	9
26	Prediction of Protein-Protein Interactions Using Protein Signature Profiling. Genomics, Proteomics and Bioinformatics, 2007, 5, 177-186.	3.0	8
27	Topological Properties of Protein-Protein and Metabolic Interaction Networks of Drosophila melanogaster. Genomics, Proteomics and Bioinformatics, 2006, 4, 80-89.	3.0	6
28	Dissolved carbon dioxide concentration profiles during very-high-gravity ethanol fermentation. Biochemical Engineering Journal, 2012, 69, 41-47.	1.8	6
29	Process Design for Very-high-gravity Ethanol Fermentation. Energy Procedia, 2014, 61, 2725-2728.	1.8	6
30	Rapid microbial growth in a pH auxostat. Biotechnology Letters, 1993, 7, 127-130.	0.5	5
31	Lag phase model for transient growth of pseudomonas putida on phenol. Canadian Journal of Chemical Engineering, 2001, 79, 732-736.	0.9	5
32	Metabolite Profiles and Growth Characteristics of Rhizobium meliloti Cultivated at Different Specific Growth Rates. Biotechnology Progress, 2003, 19, 714-719.	1.3	5
33	Metabolic flux analysis ofSaccharomyces cerevisiaeduring redox potential–controlled very highâ€gravity ethanol fermentation. Biotechnology and Applied Biochemistry, 2020, 67, 140-147.	1.4	5
34	Flux distribution and partitioning in Corynebacterium glutamicum grown at different specific growth rates. Process Biochemistry, 2002, 37, 775-785.	1.8	4
35	Ageing vessel design and optimization for continuous very-high-gravity ethanol fermentation processes. Process Biochemistry, 2012, 47, 57-61.	1.8	4
36	Reconstruction and analysis of a threeâ€compartment genomeâ€scale metabolic model for <i>Pseudomonas fluorescens</i> . Biotechnology and Applied Biochemistry, 2020, 67, 133-139.	1.4	4

Yen-Han Lin

#	Article	IF	CITATIONS
37	Amino acids profiles in a phâ€auxostat. Canadian Journal of Chemical Engineering, 1999, 77, 917-920.	0.9	3
38	WEIBULL MODELING OF THE FENTON'S OXIDATION PROCESS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 17-23.	0.9	3
39	A proteomic tool for protein identification from tandem mass spectral data. Proteomics, 2005, 5, 853-855.	1.3	3
40	The development of an algorithm for the mass spectral interpretation of phosphoproteins. Proteomics, 2005, 5, 843-845.	1.3	3
41	Development of redox potential-driven fermentation process for recombinant protein expression. Biotechnology Letters, 2021, 43, 99-103.	1.1	3
42	Fermentation redox potential control on the 1,3-propanediol production by Lactobacillus panis PM1. Process Biochemistry, 2022, 114, 139-146.	1.8	3
43	The effect of specific growth rates on the recovery of amino acids. Biotechnology Letters, 2001, 23, 1043-1046.	1.1	2
44	MEASURING FENTON'S REACTION KINETICS AT ONE-SECOND INTERVALS. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2001, 36, 1427-1435.	0.9	2
45	Distribution of ATP and reducing equivalents in Corynebacterium glutamicum during amino acid resolution. Process Biochemistry, 2002, 37, 1455-1461.	1.8	2
46	Development of t50 and its application to evaluate very-high-gravity ethanol fermentation. Journal of Bioscience and Bioengineering, 2011, 112, 388-394.	1.1	2
47	Techno-economic evaluation of redox potential-controlled ethanol fermentation processes. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 813-819.	2.7	2
48	Ethanol Fermentation Under Dissolved Carbon Dioxide Control. Energy Procedia, 2014, 61, 2729-2732.	1.8	1
49	Development of dissolved carbon dioxideâ€drivenâ€andâ€controlled repeated batch fermentation process for ethanol production. Canadian Journal of Chemical Engineering, 2020, 98, 2507-2515.	0.9	1
50	Air stripping effect in a chemostat. Canadian Journal of Chemical Engineering, 2001, 79, 995-998.	0.9	0