
Andre F Brito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717263/publications.pdf Version: 2024-02-01

ΔΝΠΦΕ Ε ΒΡΙΤΟ

#	Article	IF	CITATIONS
1	Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Global Change Biology, 2018, 24, 3368-3389.	9.5	166
2	Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but do increase milk iodine output in early lactation dairy cows fed high-forage diets. Journal of Dairy Science, 2015, 98, 1991-2004.	3.4	42
3	Production, milk iodine, and nutrient utilization in Jersey cows supplemented with the brown seaweed Ascophyllum nodosum (kelp meal) during the grazing season. Journal of Dairy Science, 2019, 102, 8040-8058.	3.4	35
4	A Review of Lignan Metabolism, Milk Enterolactone Concentration, and Antioxidant Status of Dairy Cows Fed Flaxseed. Molecules, 2019, 24, 41.	3.8	35
5	Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted. Journal of Dairy Science, 2015, 98, 2676-2681.	3.4	31
6	Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acid composition, and nutrient utilization in dairy cows fed grass hay-based diets. Journal of Dairy Science, 2015, 98, 443-457.	3.4	31
7	Production, milk fatty acid profile, and nutrient utilization in grazing dairy cows supplemented with ground flaxseed. Journal of Dairy Science, 2019, 102, 1294-1311.	3.4	27
8	The plasma free amino acid dose-response technique: A proposed methodology for determining lysine relative bioavailability of rumen-protected lysine supplements. Journal of Dairy Science, 2017, 100, 9585-9601.	3.4	23
9	Sugarcane Industrial Byproducts as Challenges to Environmental Safety and Their Remedies: A Review. Water (Switzerland), 2021, 13, 3495.	2.7	22
10	Incremental amounts of rumen-protected histidine increase plasma and muscle histidine concentrations and milk protein yield in dairy cows fed a metabolizable protein-deficient diet. Journal of Dairy Science, 2019, 102, 4138-4154.	3.4	21
11	Symposium review: Comparisons of feed and milk nitrogen efficiency and carbon emissions in organic versus conventional dairy production systems. Journal of Dairy Science, 2020, 103, 5726-5739.	3.4	21
12	Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine. Journal of Dairy Science, 2017, 100, 6239-6255.	3.4	20
13	Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets1. Journal of Dairy Science, 2015, 98, 4785-4799.	3.4	18
14	Production performance and milk fatty acid profile in grazing dairy cows offered ground corn or liquid molasses as the sole supplemental nonstructural carbohydrate source. Journal of Dairy Science, 2017, 100, 8146-8160.	3.4	17
15	Replacing ground corn with incremental amounts of liquid molasses does not change milk enterolactone but decreases production in dairy cows fed flaxseed meal. Journal of Dairy Science, 2018, 101, 2096-2109.	3.4	15
16	Production, milk and plasma fatty acid profile, and nutrient utilization in Jersey cows fed flaxseed oil and corn grain with different particle size. Journal of Dairy Science, 2018, 101, 2127-2143.	3.4	14
17	Replacing soybean meal with okara meal: Effects on production, milk fatty acid and plasma amino acid profile, and nutrient utilization in dairy cows. Journal of Dairy Science, 2021, 104, 3109-3122.	3.4	9
18	Production and nitrogen metabolism in lactating dairy cows fed finely ground field pea plus soybean meal or canola meal with or without rumen-protected methionine supplementation. Journal of Dairy Science, 2020, 103, 3161-3176.	3.4	9

Andre F Brito

#	Article	IF	CITATIONS
19	Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted. Journal of Dairy Science, 2015, 98, 8913-8925.	3.4	7
20	An overview of organic, grassfed dairy farm management and factors related to higher milk production. Renewable Agriculture and Food Systems, 2022, 37, 624-632.	1.8	7
21	Dietary starch level and rumen-protected methionine, lysine, and histidine: Effects on milk yield, nitrogen, and energy utilization in dairy cows fed diets low in metabolizable protein. Journal of Dairy Science, 2021, 104, 9784-9800.	3.4	7
22	Assessing the potential of milk iodine intake to mitigate iodine deficiency in pregnant women of the United States via supplementation of Ascophyllum nodosum meal to dairy cows: A sensitivity analysis. Journal of Dairy Science, 2020, 103, 6798-6809.	3.4	4
23	Comparative analysis of the skim milk and milk fat globule membrane proteomes produced by Jersey cows grazing pastures with different plant species diversity. Journal of Dairy Science, 2020, 103, 7498-7508.	3.4	4
24	Short communication: Feeding red clover cut in the afternoon or morning to late-lactation dairy cows. Journal of Dairy Science, 2015, 98, 7335-7339.	3.4	3
25	Winter annual forage mass–nutritive value tradeâ€offs are affected by harvest timing. Crop, Forage and Turfgrass Management, 2021, 7, e20113.	0.6	3
26	Invited commentary in response to the paper entitled â€~lodine concentration of milk-alternative drinks available in the UK in comparison with cows' milk' by Sarah Bath and colleagues. British Journal of Nutrition, 2017, 118, 879-880.	2.3	2
27	Production performance, nutrient use efficiency, and predicted enteric methane emissions in dairy cows under confinement or grazing management system. Translational Animal Science, 2022, 6, txac028.	1.1	2
28	Effects of cutting time and maceration on preference and nitrogen balance in beef steers fed mixed birdsfoot trefoil–timothy grass hay cut at sunrise or sundown. Translational Animal Science, 2020, 4, txaa168.	1.1	1
29	Evaluating warmâ€season annual forages to fill summer forage gaps in shortâ€season climates. Crop, Forage and Turfgrass Management, 2022, 8, .	0.6	1
30	Omasal flow of nonstructural carbohydrates and nitrogenous compounds in lactating dairy cows fed diets containing timothy cut in the afternoon or morning. Journal of Dairy Science, 2021, 104, 12459-12471.	3.4	0
31	Feeding Calcium-Ammonium Nitrate to Lactating Dairy Goats: Milk Quality and Ruminal Fermentation Responses. Animals, 2022, 12, 983.	2.3	0
32	Identifying optimal earlyâ€season harvest timing in annual fall forages. Crop, Forage and Turfgrass Management, 2022, 8, .	0.6	0