Paolo Annibale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8716769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell, 2022, 185, 1130-1142.e11.	13.5	85
2	The Impact of Membrane Protein Diffusion on GPCR Signaling. Cells, 2022, 11, 1660.	1.8	1
3	Determination of G-protein–coupled receptor oligomerization by molecular brightness analyses in single cells. Nature Protocols, 2021, 16, 1419-1451.	5.5	25
4	Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals, 2021, 14, 238.	1.7	80
5	Quantitative spectroscopy of single molecule interaction times. Optics Letters, 2021, 46, 1538.	1.7	2
6	Visualization of β-adrenergic receptor dynamics and differential localization in cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
7	Linescan microscopy data to extract diffusion coefficient of a fluorescent species using a commercial confocal microscope. Data in Brief, 2020, 29, 105063.	0.5	8
8	Optical Mapping of cAMP Signaling at the Nanometer Scale. Cell, 2020, 182, 1519-1530.e17.	13.5	125
9	Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29144-29154.	3.3	42
10	Single-molecule analysis reveals agonist-specific dimer formation of µ-opioid receptors. Nature Chemical Biology, 2020, 16, 946-954.	3.9	86
11	Quantitative phaseâ€mode electrostatic force microscopy on silicon oxide nanostructures. Journal of Microscopy, 2020, 280, 252-269.	0.8	7
12	Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. International Journal of Molecular Sciences, 2020, 21, 1224.	1.8	24
13	Spatial heterogeneity in molecular brightness. Nature Methods, 2020, 17, 273-275.	9.0	7
14	Visualizing the functional 3D shape and topography of long noncoding RNAs by single-particle atomic force microscopy and in-solution hydrodynamic techniques. Nature Protocols, 2020, 15, 2107-2139.	5.5	14
15	Conserved Pseudoknots in IncRNA MEG3 Are Essential for Stimulation of the p53 Pathway. Molecular Cell, 2019, 75, 982-995.e9.	4.5	138
16	Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells. ACS Chemical Biology, 2019, 14, 1141-1149.	1.6	33
17	Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape. Scientific Reports, 2017, 7, 6219.	1.6	35
18	Revealing Gâ€proteinâ€coupled receptor oligomerization at the singleâ€molecule level through a nanoscopic lens: methods, dynamics and biological function. FEBS Journal, 2016, 283, 1197-1217.	2.2	61

PAOLO ANNIBALE

#	Article	IF	CITATIONS
19	Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. Journal of Cell Science, 2016, 129, 3412-25.	1.2	60
20	Optical measurement of focal offset in tunable lenses. Optics Express, 2016, 24, 1031.	1.7	7
21	Visualizing the molecular mode of motion from a correlative analysis of localization microscopy datasets. Optics Letters, 2016, 41, 4503.	1.7	6
22	Transcription Kinetics Heterogeneity of Highly Mobile Identical Genes Revealed by Simultaneous Measurement at the Single Cell Level. Biophysical Journal, 2015, 108, 507a.	0.2	0
23	Nuclear Actin Dynamics Regulate Nuclear Organization and Transcription. Biophysical Journal, 2015, 108, 536a.	0.2	Ο
24	Fluorescence Fluctuation Microscopy Techniques to Study mRNA Synthesis and Dynamics. Biophysical Journal, 2015, 108, 324a-325a.	0.2	0
25	Single cell visualization of transcription kinetics variance of highly mobile identical genes using 3D nanoimaging. Scientific Reports, 2015, 5, 9258.	1.6	21
26	Electrically tunable lens speeds up 3D orbital tracking. Biomedical Optics Express, 2015, 6, 2181.	1.5	31
27	3D orbital tracking for super-resolving the dynamics of gene expression. , 2015, , .		Ο
28	3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles. Journal of Visualized Experiments, 2014, , e51794.	0.2	8
29	Advanced fluorescence microscopy methods for the real-time study of transcription and chromatin dynamics. Transcription, 2014, 5, e28425.	1.7	7
30	Progress in quantitative single-molecule localization microscopy. Histochemistry and Cell Biology, 2014, 142, 5-17.	0.8	78
31	3D Orbital Tracking of a DNA Locus during the Process of Transcription. Biophysical Journal, 2014, 106, 394a-395a.	0.2	1
32	Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy. Biochemical Society Transactions, 2013, 41, 191-196.	1.6	26
33	Cell Type-specific β2-Adrenergic Receptor Clusters Identified Using Photoactivated Localization Microscopy Are Not Lipid Raft Related, but Depend on Actin Cytoskeleton Integrity. Journal of Biological Chemistry, 2012, 287, 16768-16780.	1.6	76
34	Investigating the Impact of Photo-Blinking on Photo Activated Localization Microscopy: From Single Molecules to Cell Membrane Receptors. Biophysical Journal, 2012, 102, 724a.	0.2	1
35	Identification of the factors affecting co-localization precision for quantitative multicolor localization microscopy. Optical Nanoscopy, 2012, 1, 9.	4.0	35
36	Identification of clustering artifacts in photoactivated localization microscopy. Nature Methods, 2011, 8, 527-528.	9.0	197

PAOLO ANNIBALE

#	Article	IF	CITATIONS
37	Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking. PLoS ONE, 2011, 6, e22678.	1.1	252
38	ssDNA Binding Reveals the Atomic Structure of Graphene. Langmuir, 2010, 26, 18078-18082.	1.6	81
39	Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form. Journal of Physical Chemistry Letters, 2010, 1, 1506-1510.	2.1	87
40	DNA adsorption measured with ultra-thin film organic field effect transistors. Biosensors and Bioelectronics, 2009, 24, 2935-2938.	5.3	71
41	Imaging and Detection of Single Molecule Recognition Events on Organic Semiconductor Surfaces. Nano Letters, 2009, 9, 571-575.	4.5	26
42	Charge Injection Across Self-Assembly Monolayers in Organic Field-Effect Transistors:  Oddâ^'Even Effects. Journal of the American Chemical Society, 2007, 129, 6477-6484.	6.6	134
43	High-Resolution Mapping of the Electrostatic Potential in Organic Thin-Film Transistors by Phase Electrostatic Force Microscopy, Journal of Physical Chemistry A, 2007, 111, 12854-12858.	1.1	32