
Jason A Able

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8716350/publications.pdf Version: 2024-02-01

LASON & ARIE

#	Article	IF	CITATIONS
1	The Influence of Malt Variety and Origin on Wort Flavor. Journal of the American Society of Brewing Chemists, 2023, 81, 282-298.	1.1	4
2	A multi-environment framework to evaluate the adaptation of wheat (Triticum aestivum) to heat stress. Theoretical and Applied Genetics, 2022, 135, 1191-1208.	3.6	1
3	Priming crops for the future: rewiring stress memory. Trends in Plant Science, 2022, 27, 699-716.	8.8	89
4	Bioavailability of zinc and iron in durum wheat: A tradeâ€off between grain weight and nutrition?. Plants People Planet, 2021, 3, 627-639.	3.3	7
5	Small RNAs and their targets are associated with the transgenerational effects of water-deficit stress in durum wheat. Scientific Reports, 2021, 11, 3613.	3.3	19
6	Genetic analysis of wheat (Triticum aestivum) adaptation to heat stress. Theoretical and Applied Genetics, 2021, 134, 1387-1407.	3.6	10
7	Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. Plants, 2021, 10, 826.	3.5	10
8	Small RNA, Transcriptome and Degradome Analysis of the Transgenerational Heat Stress Response Network in Durum Wheat. International Journal of Molecular Sciences, 2021, 22, 5532.	4.1	11
9	A Multi-Environment Trial Analysis of Frost Susceptibility in Wheat and Barley Under Australian Frost-Prone Field Conditions. Frontiers in Plant Science, 2021, 12, 722637.	3.6	5
10	Manipulation of Barley Development and Flowering Time by Exogenous Application of Plant Growth Regulators. Frontiers in Plant Science, 2021, 12, 694424.	3.6	12
11	Adaptive Traits to Improve Durum Wheat Yield in Drought and Crown Rot Environments. International Journal of Molecular Sciences, 2020, 21, 5260.	4.1	23
12	Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum—Regulatory Networks of Grain Development and Abiotic Stress Response. International Journal of Molecular Sciences, 2020, 21, 7772.	4.1	8
13	Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. International Journal of Molecular Sciences, 2020, 21, 6017.	4.1	28
14	The Global Durum Wheat Panel (GDP): An International Platform to Identify and Exchange Beneficial Alleles. Frontiers in Plant Science, 2020, 11, 569905.	3.6	44
15	Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs. Plants, 2020, 9, 189.	3.5	26
16	Assessing frost damage in barley using terahertz imaging. Optics Express, 2020, 28, 30644.	3.4	14
17	Genotypic performance of Australian durum under single and combined water-deficit and heat stress during reproduction. Scientific Reports, 2019, 9, 14986.	3.3	22
18	A Major Root Architecture QTL Responding to Water Limitation in Durum Wheat. Frontiers in Plant Science, 2019, 10, 436.	3.6	84

JASON A ABLE

#	Article	IF	CITATIONS
19	Genotypeâ€dependent changes in the phenolic content of durum under waterâ€deficit stress. Cereal Chemistry, 2018, 95, 59-78.	2.2	21
20	Yield of chromosomally engineered durum wheat-Thinopyrum ponticum recombinant lines in a range of contrasting rain-fed environments. Field Crops Research, 2018, 228, 147-157.	5.1	11
21	A field and controlled environment evaluation of wheat (Triticum aestivum) adaptation to heat stress. Field Crops Research, 2018, 229, 55-65.	5.1	40
22	Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 2018, 14, 36.	4.3	83
23	Genotypic water-deficit stress responses in durum wheat: association between physiological traits, microRNA regulatory modules and yield components. Functional Plant Biology, 2017, 44, 538.	2.1	21
24	Translating knowledge about abiotic stress tolerance to breeding programmes. Plant Journal, 2017, 90, 898-917.	5.7	154
25	Water-deficit stress-responsive microRNAs and their targets in four durum wheat genotypes. Functional and Integrative Genomics, 2017, 17, 237-251.	3.5	34
26	Effects of Drought Stress on Pollen Sterility, Grain Yield, Abscisic Acid and Protective Enzymes in Two Winter Wheat Cultivars. Frontiers in Plant Science, 2017, 8, 1008.	3.6	75
27	SMARTER De-Stressed Cereal Breeding. Trends in Plant Science, 2016, 21, 909-925.	8.8	36
28	Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science, 2015, 66, 1024.	1.5	63
29	Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. PLoS ONE, 2015, 10, e0142799.	2.5	43
30	Durum wheat for the future: challenges, research and prospects in the 21st Century. Crop and Pasture Science, 2014, 65, i.	1.5	14
31	Response of durum wheat to different levels of zinc and Fusarium pseudograminearum. Crop and Pasture Science, 2014, 65, 61.	1.5	4
32	Metabolomics of capsicum ripening reveals modification of the ethylene related-pathway and carbon metabolism. Postharvest Biology and Technology, 2014, 89, 19-31.	6.0	40
33	Proteomic analysis during capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. Functional Plant Biology, 2013, 40, 1115.	2.1	16
34	Characterisation of ethylene pathway components in non-climacteric capsicum. BMC Plant Biology, 2013, 13, 191.	3.6	29
35	Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat. International Journal of Plant Genomics, 2012, 2012, 1-11.	2.2	21
36	Preliminary characterisation of two early meiotic wheat proteins after identification through 2D gel electrophoresis proteomics. Functional Plant Biology, 2012, 39, 222.	2.1	6

JASON A ABLE

#	Article	IF	CITATIONS
37	The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1. BMC Research Notes, 2012, 5, 106.	1.4	18
38	Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC Plant Biology, 2011, 11, 78.	3.6	115
39	Comparative Transcriptomics Reveals 129 Transcripts That Are Temporally Regulated during Anther Development and Meiotic Progression in Both Bread Wheat (<i>Triticum aestivum</i>) and Rice (<i>Oryza sativa</i>). International Journal of Plant Genomics, 2011, 2011, 1-9.	2.2	5
40	Whole genome approaches to identify early meiotic gene candidates in cereals. Functional and Integrative Genomics, 2009, 9, 219-229.	3.5	11
41	TaASY1 promotes homologous chromosome interactions and is affected by deletion of <i>Ph1</i> . Plant Journal, 2009, 57, 487-497.	5.7	104
42	Understanding meiosis and the implications for crop improvement. Functional Plant Biology, 2009, 36, 575.	2.1	15
43	The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. Functional Plant Biology, 2008, 35, 1267.	2.1	34
44	Comparative mapping of a QTL controlling black point formation in barley. Functional Plant Biology, 2008, 35, 427.	2.1	9
45	Black point formation in barley: environmental influences and quantitative trait loci. Australian Journal of Agricultural Research, 2008, 59, 1021.	1.5	10
46	Capturing diversity in the cereals: many options but little promiscuity. Trends in Plant Science, 2007, 12, 71-79.	8.8	39
47	Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Molecular Biology, 2007, 8, 65.	3.0	43
48	A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics, 2007, 7, 3800-3808.	2.2	25
49	TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biology, 2007, 7, 67.	3.6	60
50	Wild sex in the grasses. Trends in Plant Science, 2006, 11, 261-263.	8.8	21
51	Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Functional and Integrative Genomics, 2006, 7, 37-52.	3.5	9
52	Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 2006, 7, 267.	2.8	82
53	WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. Functional Plant Biology, 2005, 32, 249.	2.1	9
54	Cotton bunchy top: an aphid and graft transmitted cotton disease. Australasian Plant Pathology, 2004, 33, 197.	1.0	31

JASON A ABLE

#	Article	IF	CITATIONS
55	The <i>Ph2</i> pairing homoeologous locus of wheat (<i>Triticum aestivum</i>): identification of candidate meiotic genes using a comparative genetics approach. Plant Journal, 2003, 36, 443-456.	5.7	73
56	The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 341-348.	2.1	53
57	Profiling Malt Enzymes Related to Impact on Malt Fermentability, Lautering and Beer Filtration Performance of 94 Commercially Produced Malt Batches. Journal of the American Society of Brewing Chemists, 0, , 1-14.	1.1	6