Martin Simoneau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8716144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Body weight is a strong predictor of postural stability. Gait and Posture, 2007, 26, 32-38.	0.6	373
2	Attentional demands for postural control: the effects of aging and sensory reintegration. Gait and Posture, 2001, 14, 203-210.	0.6	288
3	Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001, 9, 126-136.	2.7	275
4	Mental workload when driving in a simulator: Effects of age and driving complexity. Accident Analysis and Prevention, 2009, 41, 763-771.	3.0	205
5	Reducing weight increases postural stability in obese and morbid obese men. International Journal of Obesity, 2007, 31, 153-160.	1.6	167
6	The impact of obesity on balance control in community-dwelling older women. Age, 2013, 35, 883-890.	3.0	97
7	Influence of obesity on accurate and rapid arm movement performed from a standing posture. International Journal of Obesity, 2006, 30, 1750-1757.	1.6	95
8	Sensory deprivation and balance control in idiopathic scoliosis adolescent. Experimental Brain Research, 2006, 170, 576-582.	0.7	88
9	Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis. BMC Neuroscience, 2006, 7, 68.	0.8	82
10	Attenuation of human neck muscle activity following repeated imposed trunk-forward linear acceleration. Experimental Brain Research, 2003, 150, 458-464.	0.7	78
11	Aging and Postural Control: Postural Perturbations Caused by Changing the Visual Anchor. Journal of the American Geriatrics Society, 1999, 47, 235-240.	1.3	77
12	Weight loss and muscular strength affect static balance control. International Journal of Obesity, 2010, 34, 936-942.	1.6	77
13	Postural imbalance in non-treated adolescent idiopathic scoliosis at different periods of progression. European Spine Journal, 2009, 18, 38-44.	1.0	73
14	Increased Plasma Levels of Toxic Pollutants Accompanying Weight Loss Induced by Hypocaloric Diet or by Bariatric Surgery. Obesity Surgery, 2006, 16, 1145-1154.	1.1	67
15	Evidence for cognitive vestibular integration impairment in idiopathic scoliosis patients. BMC Neuroscience, 2009, 10, 102.	0.8	54
16	The effects of moderate fatigue on dynamic balance control and attentional demands. Journal of NeuroEngineering and Rehabilitation, 2006, 3, 22.	2.4	52
17	Muscle Force and Force Control After Weight Loss in Obese and Morbidly Obese Men. Obesity Surgery, 2008, 18, 1112-1118.	1.1	52
18	Obesity Alters Balance and Movement Control. Current Obesity Reports, 2013, 2, 235-240.	3.5	49

#	Article	IF	CITATIONS
19	Short term alteration of balance control after a reduction of plantar mechanoreceptor sensation through cooling. Neuroscience Letters, 2013, 535, 40-44.	1.0	46
20	Balance control impairment in obese individuals is caused by larger balance motor commands variability. Gait and Posture, 2015, 41, 203-208.	0.6	45
21	Plasma concentration of organochlorine compounds is associated with age and not obesity. Chemosphere, 2007, 67, 1463-1467.	4.2	43
22	Role of loading on head stability and effective neck stiffness and viscosity. Journal of Biomechanics, 2008, 41, 2097-2103.	0.9	42
23	The effects of muscle strength on center of pressure-based measures of postural sway in obese and heavy athletic individuals. Gait and Posture, 2012, 35, 88-91.	0.6	42
24	Updating visual space during passive and voluntary head-in-space movements. Experimental Brain Research, 1998, 122, 93-100.	0.7	41
25	Coordination between posture and movement: interaction between postural and accuracy constraints. Experimental Brain Research, 2006, 170, 255-264.	0.7	37
26	Postural dependence of human locomotion during gait initiation. Journal of Neurophysiology, 2014, 112, 3095-3103.	0.9	33
27	The effect of time to peak ankle torque on balance stability boundary: experimental validation of a biomechanical model. Experimental Brain Research, 2005, 165, 217-228.	0.7	31
28	Active training and driving-specific feedback improve older drivers' visual search prior to lane changes. BMC Geriatrics, 2012, 12, 5.	1.1	31
29	Online control of anticipated postural adjustments in step initiation: Evidence from behavioral and computational approaches. Gait and Posture, 2012, 35, 616-620.	0.6	30
30	The Vestibular-Evoked Postural Response of Adolescents with Idiopathic Scoliosis Is Altered. PLoS ONE, 2015, 10, e0143124.	1.1	30
31	Facilitation of cutaneous inputs during the planning phase of gait initiation. Journal of Neurophysiology, 2015, 114, 301-308.	0.9	26
32	Reduced plantar sole sensitivity induces balance control modifications to compensate ankle tendon vibration and vision deprivation. Journal of Electromyography and Kinesiology, 2015, 25, 155-160.	0.7	26
33	Prediction of the body rotation-induced torques on the arm during reaching movements: Evidence from a proprioceptively deafferented subject. Neuropsychologia, 2011, 49, 2055-2059.	0.7	25
34	Balance control is altered in obese individuals. Journal of Biomechanics, 2010, 43, 383-384.	0.9	24
35	Changing Lanes in a Simulator: Effects of Aging on the Control of the Vehicle and Visual Inspection of Mirrors and Blind Spot. Traffic Injury Prevention, 2011, 12, 191-200.	0.6	24
36	Hypnosis to manage musculoskeletal and neuropathic chronic pain: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 2022, 135, 104591.	2.9	24

#	Article	IF	CITATIONS
37	Role of the feedforward command and reafferent information in the coordination of a passing prehension task. Experimental Brain Research, 1999, 128, 236-242.	0.7	22
38	Sensory reweighting is altered in adolescent patients with scoliosis: Evidence from a neuromechanical model. Gait and Posture, 2015, 42, 558-563.	0.6	20
39	Sensorimotor Control Impairment in Young Adults With Idiopathic Scoliosis Compared With Healthy Controls. Journal of Manipulative and Physiological Therapeutics, 2016, 39, 473-479.	0.4	20
40	Self-initiating a seated perturbation modifies the neck postural responses in humans. Neuroscience Letters, 2003, 347, 1-4.	1.0	19
41	Prediction in the Vestibular Control of Arm Movements. Multisensory Research, 2015, 28, 487-505.	0.6	18
42	Neural Consequences of Increasing Body Weight: Evidence from Somatosensory Evoked Potentials and the Frequency-Specificity of Brain Oscillations. Frontiers in Human Neuroscience, 2016, 10, 318.	1.0	18
43	Pointing to a target from an upright position in human: tuning of postural responses when there is target uncertainty. Neuroscience Letters, 2000, 281, 53-56.	1.0	17
44	Postural instability in Parkinson's disease: Review and bottom-up rehabilitative approaches. Neurophysiologie Clinique, 2020, 50, 479-487.	1.0	16
45	Relationship Between Oscillations About the Vertical Axis and Center of Pressure Displacements in Single and Double Leg Upright Stance. American Journal of Physical Medicine and Rehabilitation, 2010, 89, 809-816.	0.7	15
46	Alternative Avenues in the Assessment of Driving Capacities in Older Drivers and Implications for Training. Current Directions in Psychological Science, 2010, 19, 370-374.	2.8	15
47	Predictors of weight loss in Parkinson's disease: Is weight loss the chicken or the egg?. Movement Disorders, 2007, 22, 436-437.	2.2	13
48	Insights into the control of arm movement during body motion as revealed by EMG analyses. Brain Research, 2010, 1309, 40-52.	1.1	13
49	Older Adults with Mild Cognitive Impairments Show Less Driving Errors after a Multiple Sessions Simulator Training Program but Do Not Exhibit Long Term Retention. Frontiers in Human Neuroscience, 2016, 10, 653.	1.0	13
50	In-simulator training of driving abilities in a person with a traumatic brain injury. Brain Injury, 2011, 25, 416-425.	0.6	12
51	Cortical dynamics of sensorimotor information processing associated with balance control in adolescents with and without idiopathic scoliosis. Clinical Neurophysiology, 2019, 130, 1752-1761.	0.7	12
52	Aging reduces the ability to change grip force and balance control simultaneously. Neuroscience Letters, 2009, 452, 23-27.	1.0	9
53	Is abnormal vestibulomotor responses related to idiopathic scoliosis onset or severity?. Medical Hypotheses, 2013, 80, 234-236.	0.8	9
54	Lower-Limb Power cannot be Estimated Accurately from Vertical Jump Tests. Journal of Human Kinetics, 2013, 38, 5-13.	0.7	9

#	Article	IF	CITATIONS
55	Large Postural Sways Prevent Foot Tactile Information From Fading: Neurophysiological Evidence. Cerebral Cortex Communications, 2021, 2, tgaa094.	0.7	9
56	Effects of predictive mechanisms on head stability during forward trunk perturbation. Experimental Brain Research, 2003, 148, 338-349.	0.7	8
57	Visuo-vestibular interaction: predicting the position of a visual target during passive body rotation. Neuroscience, 2011, 195, 45-53.	1.1	8
58	THE EFFECTS OF ADDED MASS ON PLANTAR SOLE SENSITIVITY IN UPRIGHT STANDING. Journal of Biomechanics, 2012, 45, S233.	0.9	8
59	Balance control interferes with the tracing performance of a pattern with mirror-reversed vision in older persons. Age, 2014, 36, 823-837.	3.0	8
60	Controlling Reaching Movements during Self-Motion: Body-Fixed versus Earth-Fixed Targets. Motor Control, 2006, 10, 330-347.	0.3	7
61	A procedure to detect abnormal sensorimotor control in adolescents with idiopathic scoliosis. Gait and Posture, 2017, 57, 124-129.	0.6	7
62	Double-Step Paradigm in Microgravity: Preservation of Sensorimotor Flexibility in Altered Gravitational Force Field. Frontiers in Physiology, 2020, 11, 377.	1.3	7
63	A Comprehensive Review of Pain Interference on Postural Control: From Experimental to Chronic Pain. Medicina (Lithuania), 2022, 58, 812.	0.8	7
64	Effects of underestimating the kinematics of trunk rotation on simultaneous reaching movements: predictions of a biomechanical model. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 54.	2.4	6
65	Drivers with Amnestic Mild Cognitive Impairment Can Benefit from a Multiple‣ession Driving Simulator Automated Training Program. Journal of the American Geriatrics Society, 2016, 64, e16-8.	1.3	6
66	Assessment of sensorimotor control in adults with surgical correction for idiopathic scoliosis. European Spine Journal, 2016, 25, 3347-3352.	1.0	6
67	Learning to use vestibular sense for spatial updating is context dependent. Scientific Reports, 2019, 9, 11154.	1.6	6
68	Supplementary Motor Area and Superior Parietal Lobule Restore Sensory Facilitation Prior to Stepping When a Decrease of Afferent Inputs Occurs. Frontiers in Neurology, 2019, 9, 1132.	1.1	6
69	Increased EEG alpha peak frequency in adolescents with idiopathic scoliosis during balance control in normal upright standing. Neuroscience Letters, 2020, 722, 134836.	1.0	6
70	Influence of risperidone on balance control in young healthy individuals. Psychopharmacology, 2012, 222, 59-69.	1.5	5
71	Quantifying forearm and wrist joint power during unconstrained movements in healthy individuals. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 157.	2.4	5
72	Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed. Neuroscience, 2014, 260, 12-22.	1.1	5

#	Article	IF	CITATIONS
73	Improving spatial updating accuracy in absence of external feedback. Neuroscience, 2015, 300, 155-162.	1.1	5
74	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. PLoS ONE, 2019, 14, e0226216.	1.1	5
75	Comparison of Spinal Cord Stimulation vs. Dorsal Root Ganglion Stimulation vs. Association of Both in Patients with Refractory Chronic Back and/or Lower Limb Neuropathic Pain: An International, Prospective, Randomized, Double-Blinded, Crossover Trial (BOOST-DRG Study). Medicina (Lithuania), 2022, 58, 7.	0.8	5
76	Kinetic strategies of patients with shoulder impingement syndrome. Journal of Orthopaedic Research, 2010, 28, 6-11.	1.2	4
77	Motor Responses of Lumbar Erector Spinae Induced by Electrical Vestibular Stimulation in Seated Participants. Frontiers in Human Neuroscience, 2021, 15, 690433.	1.0	4
78	Effect of bracing or surgical treatments on balance control in idiopathic scoliosis: three case studies. Journal of the Canadian Chiropractic Association, 2014, 58, 131-40.	0.2	4
79	The influence of experimental low back pain on neural networks involved in the control of lumbar erector spinae muscles. Journal of Neurophysiology, 2022, 127, 1593-1605.	0.9	4
80	Sensory Integration during Vibration of Postural Muscle Tendons When Pointing to a Memorized Target. Frontiers in Human Neuroscience, 2016, 10, 682.	1.0	3
81	Two Neural Circuits to Point Towards Home Position After Passive Body Displacements. Frontiers in Neural Circuits, 2019, 13, 70.	1.4	3
82	Multiple-Session Simulator Training for Older Drivers and On-Road Transfer of Learning. , 2009, , .		3
83	Étude naturalistique de la négociation des intersections et du respect des limites de vitesse chez les conducteurs âgés de 65 ans et plus. Recherche - Transports - Securite, 2014, 2014, 271-281.	0.1	3
84	A computer vision framework for the analysis and interpretation of the cephalo-ocular behavior of drivers. Machine Vision and Applications, 2013, 24, 159-173.	1.7	2
85	Reduced plantar sole sensitivity facilitates early adaptation to a visual rotation pointing task when standing upright. Journal of Human Kinetics, 2016, 52, 65-74.	0.7	2
86	Change in the natural head-neck orientation momentarily altered sensorimotor control during sensory transition. Gait and Posture, 2017, 53, 80-85.	0.6	2
87	Is the brain able to capture a new temporal relationship between a motor action and its consequence?. Experimental Brain Research, 2007, 181, 321-332.	0.7	1
88	Sensorimotor Integration in Adolescent Idiopathic Scoliosis Patients. , 2012, , .		1
89	Estimate of body motion during voluntary body sway movements. Gait and Posture, 2014, 39, 70-74.	0.6	1
90	On the Dynamics of Spatial Updating. Frontiers in Neuroscience, 2022, 16, 780027.	1.4	1

#	Article	IF	CITATIONS
91	Somatotyping Morphology. Critical Reviews in Physical and Rehabilitation Medicine, 2005, 17, 317-330.	0.1	0
92	Adolescents with idiopathic scoliosis show decreased intermuscular coherence in lumbar paraspinal muscles: A new pathophysiological perspective. Clinical Neurophysiology, 2022, 138, 38-51.	0.7	0
93	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. , 2019, 14, e0226216.		Ο
94	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. , 2019, 14, e0226216.		0
95	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. , 2019, 14, e0226216.		Ο
96	Balance control mechanisms do not benefit from successive stimulation of different sensory systems. , 2019, 14, e0226216.		0