Anna Hošt'álková

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8715252/publications.pdf

Version: 2024-02-01

42 papers

658 citations

16 h-index 610901 24 g-index

42 all docs 42 docs citations

42 times ranked 988 citing authors

#	Article	IF	CITATIONS
1	Isoquinoline Alkaloids from <i>Berberis vulgaris</i> as Potential Lead Compounds for the Treatment of Alzheimer's Disease. Journal of Natural Products, 2019, 82, 239-248.	3.0	55
2	Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. Phytochemistry, 2019, 165, 112055.	2.9	43
3	Alkaloids from Narcissus poeticus cv. Pink Parasol of various structural types and their biological activity. Archives of Pharmacal Research, 2018, 41, 208-218.	6.3	35
4	Cytotoxic activities of Amaryllidaceae alkaloids against gastrointestinal cancer cells. Phytochemistry Letters, 2015, 13, 394-398.	1.2	34
5	Application of BACE1 immobilized enzyme reactor for the characterization of multifunctional alkaloids from Corydalis cava (Fumariaceae) as Alzheimer's disease targets. Fìtoterapìâ, 2016, 109, 241-247.	2.2	33
6	Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment. Journal of Natural Products, 2015, 78, 2666-2674.	3.0	31
7	Isoquinoline Alkaloids from <i>Fumaria officinalis</i> L. and Their Biological Activities Related to <i>Alzheimer</i> 's Disease. Chemistry and Biodiversity, 2016, 13, 91-99.	2.1	30
8	Anticancer potential of Amaryllidaceae alkaloids evaluated by screening with a panel of human cells, real-time cellular analysis and Ehrlich tumor-bearing mice. Chemico-Biological Interactions, 2017, 275, 121-132.	4.0	30
9	Isoquinoline alkaloids as a novel type of AKR1C3 inhibitors. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 250-258.	2.5	27
10	Tannins and their Influence on Health. , 2014, , 159-208.		25
10		3.0	25 24
	Tannins and their Influence on Health., 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>>O</i> >Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015,	3.0	
11	Tannins and their Influence on Health. , 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>O</i> Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192.		24
11 12	Tannins and their Influence on Health., 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>O</i> Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules, 2018, 23, 719.	3.8	24
11 12 13	Tannins and their Influence on Health. , 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>O</i> Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules, 2018, 23, 719. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fìtoterapìâ, 2015, 103, 192-196. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities.	3.8	24 24 23
11 12 13	Tannins and their Influence on Health., 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>O</i> Demethylmaritidine and Undulatine on Acetylcholinesterase and Their Predicted Penetration across the Blood–Brain Barrier. Journal of Natural Products, 2015, 78, 1189-1192. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules, 2018, 23, 719. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fìtoterapìâ, 2015, 103, 192-196. Isolation of Amaryllidaceae alkaloids from Nerine bowdenii W. Watson and their biological activities. RSC Advances, 2016, 6, 80114-80120. In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and	3.8 2.2 3.6	24 24 23 23
11 12 13 14	Tannins and their Influence on Health., 2014, , 159-208. In Vitro Inhibitory Effects of 8- <i>O</i> In Vitro Inhibitory Effects of 8- <i>O</i> In Vitro Inhibitory Effects of 8- <i i="" o<=""> In Vitro Inhibitory Effects of 8-<i i="" o<=""> In Vitro Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24, 1340. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus</i></i></i></i></i></i></i></i></i></i></i>	3.8 2.2 3.6 3.8	24 24 23 23

#	Article	IF	CITATIONS
19	Antifungal and Antibacterial Activity of Extracts and Alkaloids of Selected Amaryllidaceae Species. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	15
20	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Chelidonium Majus</i> (Papaveraceae). Natural Product Communications, 2010, 5, 1934578X1000501.	0.5	13
21	Natural Compounds (Small Molecules) as Potential and Real Drugs of Alzheimer's Disease. Studies in Natural Products Chemistry, 2014, 42, 153-194.	1.8	13
22	Ecdysterone and its Activity on some Degenerative Diseases. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	12
23	LCâ€MS/MS method for the determination of haemanthamine in rat plasma, bile and urine and its application to a pilot pharmacokinetic study. Biomedical Chromatography, 2016, 30, 1083-1091.	1.7	11
24	Isolation and cholinesterase activity of Amaryllidaceae alkaloids from Nerine bowdenii. Natural Product Communications, 2011, 6, 1827-30.	0.5	10
25	Berbanine: a new isoquinoline-isoquinolone alkaloid from Berberis vulgaris (Berberidaceae). Natural Product Communications, 2013, 8, 441-2.	0.5	8
26	Bersavine: A Novel Bisbenzylisoquinoline Alkaloid with Cytotoxic, Antiproliferative and Apoptosis-Inducing Effects on Human Leukemic Cells. Molecules, 2020, 25, 964.	3.8	7
27	Monoterpene indole alkaloids from Vinca minor L. (Apocynaceae): Identification of new structural scaffold for treatment of Alzheimer's disease. Phytochemistry, 2022, 194, 113017.	2.9	7
28	Alkaloids from Peumus boldus and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Inhibition Activity. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	6
29	Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types. Natural Product Communications, 2016, 11, 753-6.	0.5	6
30	Antimicrobial Activity of Extracts and Isoquinoline Alkaloids of Selected Papaveraceae Plants. Natural Product Communications, 2014, 9, 1934578X1400901.	0.5	5
31	Cytotoxicity of Naturally Occurring Isoquinoline Alkaloids of Different Structural Types. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	5
32	AKR1C3 Inhibitory Potency of Naturally-occurring Amaryllidaceae Alkaloids of Different Structural Types. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
33	Identification of Pavinane Alkaloids in the Genera Argemone and Eschscholzia by GC-MS. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	4
34	Alkaloids of Dicranostigma franchetianum (Papaveraceae) and Berberine Derivatives as a New Class of Antimycobacterial Agents. Biomolecules, 2022, 12, 844.	4.0	4
35	Isolation and Cholinesterase Activity of Amaryllidaceae Alkaloids from Nerine bowdenii. Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	3
36	Berbanine: A New Isoquinoline-Isoquinolone Alkaloid from Berberis Vulgaris (Berberidaceae). Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	2

#	Article	lF	CITATIONS
37	Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules, 2021, 26, 6023.	3.8	2
38	(+)-Chenabinol (Revised NMR Data) and Two New Alkaloids from <i>Berberis vulgaris </i> and their Biological Activity. Natural Product Communications, 2015, 10, 1934578X1501001.	0.5	1
39	Copper(II) Sulfate Stimulates Scopoletin Production in Cell Suspension Cultures of <i>Angelica archangelica</i> Natural Product Communications, 2017, 12, 1934578X1701201.	0.5	1
40	Multifunctional activity of some isoquinoline alkaloids from Corydalis cava tubers on Alzheimer's disease targets. Planta Medica, 2016, 81, S1-S381.	1.3	0
41	Cytotoxic potential of naturally occurring isoquinoline alkaloids possessing different structural types. Planta Medica, 2016, 81, S1-S381.	1.3	O
42	Alkaloids of Narcissus poeticus cv. Pink Parasol and their biological activity. Planta Medica, 2016, 81, S1-S381.	1.3	0