Michelle M Monasky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8715181/publications.pdf

Version: 2024-02-01

331259 395343 1,311 68 21 citations h-index g-index papers

70 70 70 1783 docs citations times ranked citing authors all docs

33

#	Article	IF	CITATIONS
1	Brugada syndrome genetics is associated with phenotype severity. European Heart Journal, 2021, 42, 1082-1090.	1.0	59
2	The antithetic role of ceramide and sphingosineâ€1â€phosphate in cardiac dysfunction. Journal of Cellular Physiology, 2021, 236, 4857-4873.	2.0	8
3	Common modulators of Brugada syndrome phenotype do not affect SCN5A prognostic value. European Heart Journal, 2021, 42, 1273-1274.	1.0	10
4	Novel SCN5A p.Val1667Asp Missense Variant Segregation and Characterization in a Family with Severe Brugada Syndrome and Multiple Sudden Deaths. International Journal of Molecular Sciences, 2021, 22, 4700.	1.8	5
5	Evaluating the Use of Genetics in Brugada Syndrome Risk Stratification. Frontiers in Cardiovascular Medicine, 2021, 8, 652027.	1.1	11
6	Role of Pharmacogenetics in Adverse Drug Reactions: An Update towards Personalized Medicine. Frontiers in Pharmacology, 2021, 12, 651720.	1.6	15
7	Early Morning QT Prolongation During Hypoglycemia: Only a Matter of Glucose?. Frontiers in Cardiovascular Medicine, 2021, 8, 688875.	1.1	5
8	Further Considerations in Childhood-Onset Hypertrophic Cardiomyopathy Genetic Testing. Frontiers in Cardiovascular Medicine, 2021, 8, 698078.	1.1	0
9	Commentary: Peptide-Based Targeting of the L-Type Calcium Channel Corrects the Loss-of-Function Phenotype of Two Novel Mutations of the CACNA1 Gene Associated With Brugada Syndrome. Frontiers in Physiology, 2021, 12, 682567.	1.3	2
10	Impact of Dietary Factors on Brugada Syndrome and Long QT Syndrome. Nutrients, 2021, 13, 2482.	1.7	6
11	Clinical Considerations for a Family with Dilated Cardiomyopathy, Sudden Cardiac Death, and a Novel TTN Frameshift Mutation. International Journal of Molecular Sciences, 2021, 22, 670.	1.8	5
12	Brugada Syndrome: Warning of a Systemic Condition?. Frontiers in Cardiovascular Medicine, 2021, 8, 771349.	1.1	8
13	The Mechanism of Ajmaline and Thus Brugada Syndrome: Not Only the Sodium Channel!. Frontiers in Cardiovascular Medicine, 2021, 8, 782596.	1.1	6
14	Letter by Romani et al Regarding Article, "Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation". Circulation, 2021, 144, e280-e281.	1.6	0
15	New electromechanical substrate abnormalities in high-risk patients with Brugada syndrome. Heart Rhythm, 2020, 17, 637-645.	0.3	26
16	The omics of channelopathies and cardiomyopathies: what we know and how they are useful. European Heart Journal Supplements, 2020, 22, L105-L109.	0.0	12
17	HIF-1α Directly Controls WNT7A Expression During Myogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 593508.	1.8	6
18	Novel CineECG Derived From Standard 12-Lead ECG Enables Right Ventricle Outflow Tract Localization of Electrical Substrate in Patients With Brugada Syndrome. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008524.	2.1	14

#	Article	IF	CITATIONS
19	Novel SCN5A p.V1429M Variant Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2020, 21, 5902.	1.8	5
20	Right ventricular electromechanical abnormalities in Brugada syndrome: is this a cardiomyopathy?. European Heart Journal Supplements, 2020, 22, E101-E104.	0.0	10
21	Brugada Syndrome: Oligogenic or Mendelian Disease?. International Journal of Molecular Sciences, 2020, 21, 1687.	1.8	45
22	Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Current Medicinal Chemistry, 2020, 27, 3448-3462.	1.2	6
23	Role of sialidase Neu3 and ganglioside GM3 in cardiac fibroblasts activation. Biochemical Journal, 2020, 477, 3401-3415.	1.7	9
24	Comparable clinical characteristics in Brugada syndrome patients harboring SCN5A or novel SCN10A variants. Europace, 2019, 21, 1550-1558.	0.7	15
25	Non-invasive assessment of the arrhythmogenic substrate in Brugada syndrome using signal-averaged electrocardiogram: clinical implications from a prospective clinical trial. Europace, 2019, 21, 1900-1910.	0.7	8
26	Novel SCN5A p.W697X Nonsense Mutation Segregation in a Family with Brugada Syndrome. International Journal of Molecular Sciences, 2019, 20, 4920.	1.8	7
27	Genotype–Phenotype Correlation in a Family with Brugada Syndrome Harboring the Novel p.Gln371* Nonsense Variant in the SCN5A Gene. International Journal of Molecular Sciences, 2019, 20, 5522.	1.8	8
28	Sphingolipid Synthesis Inhibition by Myriocin Administration Enhances Lipid Consumption and Ameliorates Lipid Response to Myocardial Ischemia Reperfusion Injury. Frontiers in Physiology, 2019, 10, 986.	1.3	16
29	Genotype/Phenotype Relationship in a Consanguineal Family With Brugada Syndrome Harboring the R1632C Missense Variant in the SCN5A Gene. Frontiers in Physiology, 2019, 10, 666.	1.3	11
30	Novel SCN5A Frameshift Mutation in Brugada Syndrome Associated With Complex Arrhythmic Phenotype. Frontiers in Genetics, 2019, 10, 547.	1.1	10
31	Unusual response to ajmaline test in Brugada syndrome patient leads to extracorporeal membrane oxygenator support. Europace, 2019, 21, 1574-1574.	0.7	9
32	SCN5A Nonsense Mutation and NF1 Frameshift Mutation in a Family With Brugada Syndrome and Neurofibromatosis. Frontiers in Genetics, 2019, 10, 50.	1.1	12
33	Epicardial ablation in genetic cardiomyopathies: a new frontier. European Heart Journal Supplements, 2019, 21, B61-B66.	0.0	12
34	Novel JAG1 Deletion Variant in Patient with Atypical Alagille Syndrome. International Journal of Molecular Sciences, 2019, 20, 6247.	1.8	15
35	General Anesthesia Attenuates Brugada Syndrome Phenotype Expression. JACC: Clinical Electrophysiology, 2018, 4, 518-530.	1.3	23
36	Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. International Journal of Molecular Sciences, 2018, 19, 3194.	1.8	44

#	Article	IF	Citations
37	GM1 Ganglioside Promotes Osteogenic Differentiation of Human Tendon Stem Cells. Stem Cells International, 2018, 2018, 1-8.	1.2	13
38	Calcium in Brugada Syndrome: Questions for Future Research. Frontiers in Physiology, 2018, 9, 1088.	1.3	26
39	Length-Dependent Prolongation of Force Relaxation Is Unaltered by Delay of Intracellular Calcium Decline in Early-Stage Rabbit Right Ventricular Hypertrophy. Frontiers in Physiology, 2017, 8, 945.	1.3	5
40	Commentary: Next Generation Sequencing and Linkage Analysis for the Molecular Diagnosis of a Novel Overlapping Syndrome Characterized by Hypertrophic Cardiomyopathy and Typical Electrical Instability of Brugada Syndrome. Frontiers in Physiology, 2017, 8, 1056.	1.3	11
41	Effect of exercise training and myocardial infarction on force development and contractile kinetics in isolated canine myocardium. Journal of Applied Physiology, 2016, 120, 817-824.	1.2	4
42	Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Archiv European Journal of Physiology, 2014, 466, 1189-1197.	1.3	21
43	The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2014, 66, 27-40.	0.9	34
44	P21-activated kinase in inflammatory and cardiovascular disease. Cellular Signalling, 2014, 26, 2060-2069.	1.7	30
45	Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myofilament properties. Journal of Molecular and Cellular Cardiology, 2013, 56, 44-54.	0.9	75
46	Post-translational modifications of myofilament proteins involved in length-dependent prolongation of relaxation in rabbit right ventricular myocardium. Archives of Biochemistry and Biophysics, 2013, 535, 22-29.	1.4	17
47	The Î ² -arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H856-H866.	1.5	72
48	Conserved Asp-137 Is Important for both Structure and Regulatory Functions of Cardiac \hat{l} ±-Tropomyosin (\hat{l} ±-TM) in a Novel Transgenic Mouse Model Expressing \hat{l} ±-TM-D137L. Journal of Biological Chemistry, 2013, 288, 16235-16246.	1.6	23
49	Cholesterol regulation of PIP2: why cell type is so important. Frontiers in Physiology, 2013, 3, 492.	1.3	10
50	p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H224-H230.	1.5	24
51	Ranolazine Improves Cardiac Diastolic Dysfunction Through Modulation of Myofilament Calcium Sensitivity. Circulation Research, 2012, 110, 841-850.	2.0	156
52	Tetrahydrobiopterin Improves Diastolic Heart Failure by Increasing Myofilament Calcium Sensitivity. Journal of Cardiac Failure, 2012, 18, S7.	0.7	0
53	Post-Translational Modifications of Myofilament Proteins Involved in Length-Dependent Prolongation of Relaxation in Rabbit Right Ventricular Myocardium. Biophysical Journal, 2012, 102, 614a.	0.2	0
54	Ablation of p21-activated kinase-1 in mice promotes isoproterenol-induced cardiac hypertrophy in association with activation of Erk1/2 and inhibition of protein phosphatase 2A. Journal of Molecular and Cellular Cardiology, 2011, 51, 988-996.	0.9	52

#	Article	IF	CITATIONS
55	Effect of twitch interval duration on the contractile function of subsequent twitches in isolated rat, rabbit, and dog myocardium under physiological conditions. Journal of Applied Physiology, 2011, 111, 1159-1167.	1.2	10
56	Effects of dietary omega–3 fatty acids on ventricular function in dogs with healed myocardial infarctions: in vivo and in vitro studies. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1219-H1228.	1.5	38
57	Increased phosphorylation of tropomyosin, troponin I, and myosin light chain-2 after stretch in rabbit ventricular myocardium under physiological conditions. Journal of Molecular and Cellular Cardiology, 2010, 48, 1023-1028.	0.9	50
58	Increased Phosphorylation of Myofilament Proteins after Stretch in Rabbit Ventricular Myocardium. Biophysical Journal, 2010, 98, 717a.	0.2	0
59	Impairment of Diastolic Function by Lack of Frequency-Dependent Myofilament Desensitizationin Rabbit Right Ventricular Hypertrophy. Circulation: Heart Failure, 2009, 2, 472-481.	1.6	34
60	A random cycle length approach for assessment of myocardial contraction in isolated rabbit myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1940-H1948.	1.5	6
61	The positive force–frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2009, 179, 469-479.	0.7	40
62	The Positive Force-Frequency Relationship Is Maintained In Absence Of Sarcoplasmic Reticulum Function In Rabbit, But Not In Rat Myocardium. Biophysical Journal, 2009, 96, 620a.	0.2	0
63	The positive forceâ€frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. FASEB Journal, 2009, 23, 953.2.	0.2	0
64	Frequency dependent myofilament desensitization is impaired in rabbit right ventricular hypertrophy. FASEB Journal, 2009, 23, 953.1.	0.2	0
65	Gender comparison of contractile performance and beta-adrenergic response in isolated rat cardiac trabeculae. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2008, 178, 307-313.	0.7	25
66	Dissociation of force decline from calcium decline by preload in isolated rabbit myocardium. Pflugers Archiv European Journal of Physiology, 2008, 456, 267-276.	1.3	43
67	Frequency-dependent contractile response of isolated cardiac trabeculae under hypo-, normo-, and hyperthermic conditions. Journal of Applied Physiology, 2006, 100, 1727-1732.	1.2	28
68	The electro-anatomical pathway for normal and abnormal ECGs in COVID patients. , 0, , .		1