Uttam Manna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8714681/publications.pdf Version: 2024-02-01

Πτταμ Μανινά

#	Article	IF	CITATIONS
1	Reactive Multilayer Coating As Versatile Nanoarchitectonics for Customizing Various Bioinspired Liquid Wettabilities. ACS Applied Materials & Interfaces, 2023, 15, 25232-25247.	4.0	8
2	Small molecules derived Tailored-Superhydrophobicity on fibrous and porous Substrates—with superior tolerance. Chemical Engineering Journal, 2022, 430, 132597.	6.6	8
3	Stimuliâ€Responsive Liquidâ€Crystalâ€Infused Porous Surfaces for Manipulation of Underwater Gas Bubble Transport and Adhesion. Advanced Materials, 2022, 34, e2110085.	11.1	21
4	Dually reactive multilayer coatings enable orthogonal manipulation of underwater superoleophobicity and oil adhesion <i>via</i> post-functionalization. Materials Horizons, 2022, 9, 991-1001.	6.4	14
5	Hysteresis Model for Water Retention Characteristics of Water-Absorbing Polymer-Amended Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	4
6	Designing a Network of Crystalline Polymers for a Scalable, Nonfluorinated, Healable and Amphiphobic Solid Slippery Interface. Angewandte Chemie, 2022, 134, .	1.6	3
7	Designing a Network of Crystalline Polymers for a Scalable, Nonfluorinated, Healable and Amphiphobic Solid Slippery Interface. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
8	Multiplexed Covalent Patterns on Doubleâ€Reactive Porous Coating. Chemistry - an Asian Journal, 2022, ,	1.7	1
9	A self-cleaning hydrophobic MOF-based composite for highly efficient and recyclable separation of oil from water and emulsions. Materials Chemistry Frontiers, 2022, 6, 2051-2060.	3.2	14
10	Role of chemistry in bio-inspired liquid wettability. Chemical Society Reviews, 2022, 51, 5452-5497.	18.7	53
11	Porous and reactive polymeric interfaces: an emerging avenue for achieving durable and functional bio-inspired wettability. Journal of Materials Chemistry A, 2021, 9, 824-856.	5.2	24
12	The synthesis of a chemically reactive and polymeric luminescent gel. Chemical Science, 2021, 12, 2097-2107.	3.7	12
13	Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules. Chemical Communications, 2021, 57, 2110-2123.	2.2	8
14	Design of â€~tolerant and hard' superhydrophobic coatings to freeze physical deformation. Materials Horizons, 2021, 8, 2717-2725.	6.4	15
15	Abrasion tolerant, non-stretchable and super-water-repellent conductive & ultrasensitive pattern for identifying slow, fast, weak and strong human motions under diverse conditions. Materials Horizons, 2021, 8, 2851-2858.	6.4	6
16	Bioâ€inspired Underwater Superâ€Oilâ€Wettability for Controlling Platelet Adhesion. Chemistry - an Asian Journal, 2021, 16, 1081-1085.	1.7	6
17	Unconventional and Facile Fabrication of Chemically Reactive Silk Fibroin Sponges for Environmental Remediation. ACS Applied Materials & Interfaces, 2021, 13, 24258-24271.	4.0	14
18	Design of a Waste Paperâ€Derived Chemically â€~Reactive' and Durable Functional Material with Tailorable Mechanical Property Following an Ambient and Sustainable Chemical Approach. Chemistry - an Asian Journal, 2021, 16, 1988-2001.	1.7	2

#	Article	IF	CITATIONS
19	Polymer Coatings Comprised Entirely of Soft and Semipermeable Microcapsules. ACS Applied Polymer Materials, 2021, 3, 4044-4054.	2.0	2
20	Liquid Crystal-Infused Porous Polymer Surfaces: A "Slippery―Soft Material Platform for the Naked-Eye Detection and Discrimination of Amphiphilic Species. ACS Applied Materials & Interfaces, 2021, 13, 33652-33663.	4.0	5
21	Structured Liquid Droplets as Chemical Sensors that Function Inside Living Cells. ACS Applied Materials & Interfaces, 2021, 13, 42502-42512.	4.0	11
22	Rapid and Scalable Synthesis of a Vanillin-Based Organogelator and Its Durable Composite for a Comprehensive Remediation of Crude-Oil Spillages. ACS Applied Materials & Interfaces, 2021, 13, 46803-46812.	4.0	11
23	Performance of an Electromagnetic Sensor for Field Monitoring of Volumetric Water Content in Water-Absorbing Polymer Amended Soil. Lecture Notes in Civil Engineering, 2021, , 15-24.	0.3	4
24	Rapid recognition of fatal cyanide in water in a wide pH range by a trifluoroacetamido based metal–organic framework. New Journal of Chemistry, 2021, 45, 20193-20200.	1.4	14
25	Quantifying the combined effect of pH and salinity on the performance of water absorbing polymers used for drought management. Journal of Polymer Research, 2021, 28, 1.	1.2	6
26	Michael Addition Reaction Assisted Derivation of Functional and Durable Superhydrophobic Interfaces. Chemistry of Materials, 2021, 33, 8941-8959.	3.2	14
27	Hydrophobicity or superhydrophobicity—which is the right choice for stabilizing underwater superoleophilicity?. Journal of Materials Chemistry A, 2020, 8, 97-106.	5.2	20
28	Covalently Modulated and Transiently Visible Writing: Rational Association of Two Extremes of Water Wettabilities. ACS Applied Materials & Interfaces, 2020, 12, 2935-2943.	4.0	10
29	Evaluating the Impact of Tailored Water Wettability on Performance of CO ₂ Capture. ACS Applied Energy Materials, 2020, 3, 10541-10549.	2.5	6
30	Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil and Tillage Research, 2020, 204, 104736.	2.6	109
31	Customizing oil-wettability in air—without affecting extreme water repellency. Nanoscale, 2020, 12, 24349-24356.	2.8	12
32	Transformation of non-water sorbing fly ash to a water sorbing material for drought management. Scientific Reports, 2020, 10, 18664.	1.6	12
33	Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications. Journal of Materials Chemistry A, 2020, 8, 25040-25046.	5.2	30
34	Synthesis of orthogonally reactive multilayered microcapsules. Chemical Communications, 2020, 56, 7853-7856.	2.2	4
35	Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency. Geoderma, 2020, 368, 114310.	2.3	35
36	Reduction of imine-based cross-linkages to achieve sustainable underwater superoleophobicity that performs under challenging conditions. Journal of Materials Chemistry A, 2020, 8, 15148-15156.	5.2	13

#	Article	IF	CITATIONS
37	How Does Chemistry Influence Liquid Wettability on Liquid-Infused Porous Surface?. ACS Applied Materials & Interfaces, 2020, 12, 14531-14541.	4.0	16
38	Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chemical Science, 2020, 11, 6556-6566.	3.7	16
39	Evaluation of Capacitance Sensor for Suction Measurement in Silty Clay Loam. Geotechnical and Geological Engineering, 2020, 38, 4319-4331.	0.8	16
40	Effect of Water Absorbing Polymer Amendment on Water Retention Properties of Cohesionless Soil. Lecture Notes in Civil Engineering, 2020, , 185-195.	0.3	8
41	Catalyst-Free and Rapid Chemical Approach for in Situ Growth of "Chemically Reactive―and Porous Polymeric Coating. ACS Applied Materials & Interfaces, 2019, 11, 34316-34329.	4.0	12
42	Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces. ACS Applied Materials & Interfaces, 2019, 11, 28571-28581.	4.0	19
43	A Scalable Chemical Approach for the Synthesis of a Highly Tolerant and Efficient Oil Absorbent. Chemistry - an Asian Journal, 2019, 14, 4732-4740.	1.7	8
44	Sustainable Biomimicked Oil/Water Wettability That Performs Under Severe Challenges. ACS Sustainable Chemistry and Engineering, 2019, 7, 11350-11359.	3.2	18
45	Chemically reactive protein nanoparticles for synthesis of a durable and deformable superhydrophobic material. Nanoscale Advances, 2019, 1, 1746-1753.	2.2	16
46	A biodegradable polymer-based common chemical avenue for optimizing switchable, chemically reactive and tunable adhesive superhydrophobicity. Journal of Materials Chemistry A, 2019, 7, 9120-9129.	5.2	31
47	Rational Chemical Engineering in Natural Protein Derived Functional Interface. ACS Sustainable Chemistry and Engineering, 2019, 7, 7502-7509.	3.2	9
48	Rational Use of Dual Chemical Reactivity in a Single Interface for Optimizing Both Superhydrophobicity and Underwater Superoleophobicity. Chemistry of Materials, 2019, 31, 1479-1484.	3.2	17
49	Superhydrophobic Interfaces for High-Performance/Advanced Application. Materials Horizons, 2019, , 411-457.	0.3	1
50	â€~Fish-scale'-mimicked stretchable and robust oil-wettability that performs in various practically relevant physically/chemically severe scenarios. Journal of Materials Chemistry A, 2018, 6, 22027-22036.	5.2	19
51	Hierarchically featured and substrate independent bulk-deposition of â€~reactive' polymeric nanocomplexes for controlled and strategic manipulation of durable biomimicking wettability. Journal of Materials Chemistry A, 2018, 6, 6642-6653.	5.2	29
52	Simultaneous and controlled release of two different bioactive small molecules from nature inspired single material. Journal of Materials Chemistry B, 2018, 6, 7692-7702.	2.9	8
53	Aloe vera mucilage derived highly tolerant underwater superoleophobic coatings. Journal of Materials Chemistry A, 2018, 6, 22465-22471.	5.2	14
54	Alkali metal-ion assisted Michael addition reaction in controlled tailoring of topography in a superhydrophobic polymeric monolith. Journal of Materials Chemistry A, 2018, 6, 17019-17031.	5.2	14

#	Article	IF	CITATIONS
55	Green and Rapid Synthesis of Durable and Super-Oil (under Water) and Water (in Air) Repellent Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 23451-23457.	4.0	9
56	Synthesis of fish scale and lotus leaf mimicking, stretchable and durable multilayers. Journal of Materials Chemistry A, 2018, 6, 15993-16002.	5.2	37
57	Stretchable and durable superhydrophobicity that acts both in air and under oil. Journal of Materials Chemistry A, 2017, 5, 15208-15216.	5.2	56
58	Selective Cooperation with Liquids for Environmentally Friendly and Comprehensive Oil–Water Separation. ChemSusChem, 2017, 10, 4839-4844.	3.6	7
59	Exceptional control on physical properties of a polymeric material through alcoholic solvent-mediated environment-friendly Michael addition reaction. Green Chemistry, 2017, 19, 4527-4532.	4.6	17
60	Robust and Self-Healable Bulk-Superhydrophobic Polymeric Coating. Chemistry of Materials, 2017, 29, 8720-8728.	3.2	65
61	A general and facile chemical avenue for the controlled and extreme regulation of water wettability in air and oil wettability under water. Chemical Science, 2017, 8, 6542-6554.	3.7	47
62	Superhydrophobic polymer multilayers for the filtration―and absorptionâ€based separation of oil/water mixtures. Journal of Polymer Science Part A, 2017, 55, 3127-3136.	2.5	10
63	†Reactive' nano-complex coated medical cotton: a facile avenue for tailored release of small molecules. Nanoscale, 2017, 9, 16154-16165.	2.8	29
64	Strategic Formulation of Graphene Oxide Sheets for Flexible Monoliths and Robust Polymeric Coatings Embedded with Durable Bioinspired Wettability. ACS Applied Materials & Interfaces, 2017, 9, 42354-42365.	4.0	26
65	Sustainable polymeric material for the facile and repetitive removal of oil-spills through the complementary use of both selective-absorption and active-filtration processes. Journal of Materials Chemistry A, 2017, 5, 23339-23348.	5.2	47
66	Synthesis of â€~reactive' and covalent polymeric multilayer coatings with durable superoleophobic and superoleophilic properties under water. Chemical Science, 2017, 8, 6092-6102.	3.7	48
67	Facile Synthesis of Tunable and Durable Bulk Superhydrophobic Material from Amine "Reactive― Polymeric Gel. Chemistry of Materials, 2016, 28, 8689-8699.	3.2	50
68	Slippery Liquidâ€Infused Porous Surfaces that Prevent Microbial Surface Fouling and Kill Nonâ€Adherent Pathogens in Surrounding Media: A Controlled Release Approach. Advanced Functional Materials, 2016, 26, 3599-3611.	7.8	132
69	Slippery Liquid-Infused Porous Surfaces that Prevent Bacterial Surface Fouling and Inhibit Virulence Phenotypes in Surrounding Planktonic Cells. ACS Infectious Diseases, 2016, 2, 509-517.	1.8	83
70	Designing a single superabsorbent for separating oil from both layered as well as micron/submicron size emulsified oil/water mixtures by gamma radiation assisted grafting. RSC Advances, 2016, 6, 26086-26095.	1.7	17
71	Synthetic Surfaces with Robust and Tunable Underwater Superoleophobicity. Advanced Functional Materials, 2015, 25, 1672-1681.	7.8	104
72	Fabrication of Liquidâ€Infused Surfaces Using Reactive Polymer Multilayers: Principles for Manipulating the Behaviors and Mobilities of Aqueous Fluids on Slippery Liquid Interfaces. Advanced Materials, 2015, 27, 3007-3012.	11.1	143

#	Article	IF	CITATIONS
73	Covalent Immobilization of Caged Liquid Crystal Microdroplets on Surfaces. ACS Applied Materials & Interfaces, 2015, 7, 26892-26903.	4.0	15
74	Surfactant-Induced Ordering and Wetting Transitions of Droplets of Thermotropic Liquid Crystals "Caged―Inside Partially Filled Polymeric Capsules. Langmuir, 2014, 30, 14944-14953.	1.6	16
75	Patterning and Impregnation of Superhydrophobic Surfaces Using Aqueous Solutions. ACS Applied Materials & amp; Interfaces, 2013, 5, 7731-7736.	4.0	33
76	Restoration of Superhydrophobicity in Crushed Polymer Films by Treatment with Water: Selfâ€Healing and Recovery of Damaged Topographic Features Aided by an Unlikely Source. Advanced Materials, 2013, 25, 5104-5108.	11.1	125
77	Superhydrophobic Polymer Multilayers that Promote the Extended, Longâ€Term Release of Embedded Waterâ€Soluble Agents. Advanced Materials, 2013, 25, 6405-6409.	11.1	38
78	"Shrinkâ€ŧoâ€Fit―Superhydrophobicity: Thermallyâ€Induced Microscale Wrinkling of Thin Hydrophobic Multilayers Fabricated on Flexible Shrinkâ€Wrap Substrates. Advanced Materials, 2013, 25, 3085-3089.	11.1	37
79	Liquid Crystal Chemical Sensors That Cells Can Wear. Angewandte Chemie - International Edition, 2013, 52, 14011-14015.	7.2	75
80	Chemical Patterning and Physical Refinement of Reactive Superhydrophobic Surfaces. Advanced Materials, 2012, 24, 4291-4295.	11.1	73
81	Hollow hemisphere and microcapsules of nonionic copolymer. Journal of Materials Chemistry, 2011, 21, 263-268.	6.7	4
82	Glucose-Triggered Drug Delivery from Borate Mediated Layer-by-Layer Self-Assembly. ACS Applied Materials & amp; Interfaces, 2010, 2, 1521-1527.	4.0	73
83	Self-Assembly of Biopolymers on Colloidal Particles via Hydrogen Bonding. Journal of Physical Chemistry Letters, 2010, 1, 907-911.	2.1	6
84	Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chemical Communications, 2010, 46, 2250.	2.2	37
85	Dual Drug Delivery Microcapsules via Layer-by-Layer Self-Assembly. Langmuir, 2009, 25, 10515-10522.	1.6	61
86	Borax Mediated Layer-by-Layer Self-Assembly of Neutral Poly(vinyl alcohol) and Chitosan. Journal of Physical Chemistry B, 2009, 113, 9137-9142.	1.2	82
87	Layer-by-Layer Self-Assembly of Modified Hyaluronic Acid/Chitosan Based on Hydrogen Bonding. Biomacromolecules, 2009, 10, 2632-2639.	2.6	70
88	Encapsulation of Uncharged Water-Insoluble Organic Substance in Polymeric Membrane Capsules via Layer-by-Layer Approach. Journal of Physical Chemistry B, 2008, 112, 13258-13262.	1.2	43
89	Design of a Super-Liquid Crystal-Phobic Coating for Immobilizing Liquid Crystal μ-Droplets─Without Affecting Their Sensitivity. Langmuir, 0, , .	1.6	0