Mansi Malhotra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8714171/publications.pdf

Version: 2024-02-01

471509 501196 27 927 17 28 citations h-index g-index papers 29 29 29 1221 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Adsorption of metal ions on graphene sheet for applications in environmental sensing and wastewater treatment. Sensors and Actuators Reports, 2022, 4, 100077.	4.4	6
2	One-step preparation of bioactive enzyme/inorganic materials. Journal of Materials Chemistry B, 2021, 9, 8451-8463.	5.8	2
3	"Simple-Stir―Heterolayered MoS ₂ /Graphene Nanosheets for Zn–Air Batteries. ACS Applied Nano Materials, 2021, 4, 10389-10398.	5.0	17
4	N-Heterocyclic carbene-ended polymers as surface ligands of plasmonic metal nanoparticles. Journal of Materials Chemistry C, 2020, 8, 2280-2288.	5.5	24
5	Stirred Not Shaken: Facile Production of High-Quality, High-Concentration Graphene Aqueous Suspensions Assisted by a Protein. ACS Applied Materials & Emp; Interfaces, 2020, 12, 3815-3826.	8.0	6
6	Engineering functional inorganic nanobiomaterials: controlling interactions between 2D-nanosheets and enzymes. Dalton Transactions, 2020, 49, 3917-3933.	3.3	7
7	Exfoliated and water dispersible biocarbon nanotubes for enzymology applications. Methods in Enzymology, 2020, 630, 407-430.	1.0	1
8	Tuning Enzyme/α-Zr(IV) Phosphate Nanoplate Interactions via Chemical Modification of Glucose Oxidase. Langmuir, 2018, 34, 480-491.	3.5	5
9	Stimuli-responsive, protein hydrogels for potential applications in enzymology and drug delivery\$\$^{S}\$\$. Journal of Chemical Sciences, 2018, 130, 1.	1.5	6
10	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	19.5	88
11	Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis. RSC Advances, 2017, 7, 29563-29574.	3.6	12
12	Controlling the Graphene–Bio Interface: Dispersions in Animal Sera for Enhanced Stability and Reduced Toxicity. Langmuir, 2017, 33, 14184-14194.	3.5	23
13	Designer Histone Complexes: Controlling Protein–DNA Interactions with Protein Charge as an "All-or-None―Digital Switch. Journal of Physical Chemistry B, 2016, 120, 11880-11887.	2.6	3
14	"Stable-on-the-Table―Enzymes: Engineering the Enzyme–Graphene Oxide Interface for Unprecedented Kinetic Stability of the Biocatalyst. ACS Catalysis, 2016, 6, 339-347.	11.2	34
15	Biofunctionalization of α-Zirconium Phosphate Nanosheets: Toward Rational Control of Enzyme Loading, Affinities, Activities and Structure Retention. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9643-9653.	8.0	17
16	Toward "Stable-on-the-Table―Enzymes: Improving Key Properties of Catalase by Covalent Conjugation with Poly(acrylic acid). Bioconjugate Chemistry, 2014, 25, 1501-1510.	3.6	31
17	Metal-Enzyme Frameworks: Role of Metal Ions in Promoting Enzyme Self-Assembly on α-Zirconium(IV) Phosphate Nanoplates. Langmuir, 2013, 29, 2971-2981.	3.5	26
18	Tuning the Activities and Structures of Enzymes Bound to Graphene Oxide with a Protein Glue. Langmuir, 2013, 29, 15643-15654.	3.5	38

#	Article	IF	CITATION
19	Nanobio Interfaces: Charge Control of Enzyme/Inorganic Interfaces for Advanced Biocatalysis. Langmuir, 2013, 29, 14001-14016.	3.5	30
20	Control of Enzyme–Solid Interactions via Chemical Modification. Langmuir, 2012, 28, 11881-11889.	3.5	25
21	Proteinâ^'Solid Interactions: Important Role of Solvent, Ions, Temperature, and Buffer in Protein Binding to α-Zr(IV) Phosphate. Langmuir, 2009, 25, 12635-12643.	3.5	21
22	Molecular Signatures of Enzymeâ^'Solid Interactions: Thermodynamics of Protein Binding to α-Zr(IV) Phosphate Nanoplates. Journal of Physical Chemistry B, 2009, 113, 15083-15089.	2.6	20
23	Enzyme-inorganic nanoporous materials: Stabilization of proteins intercalated in α-zirconium(IV) phosphate by a denaturant. Microporous and Mesoporous Materials, 2008, 110, 517-527.	4.4	17
24	Novel enzyme/DNA/inorganic nanomaterials: a new generation of biocatalysts. Dalton Transactions, 2007, , 5483.	3.3	36
25	Denaturation and Renaturation of Self-Assembled Yeast Iso-1-cytochromecon Au. Analytical Chemistry, 2004, 76, 2112-2117.	6.5	39
26	Proteins Immobilized at the Galleries of Layered α-Zirconium Phosphate:  Structure and Activity Studies. Journal of the American Chemical Society, 2000, 122, 830-837.	13.7	266
27	Nanoencapsulation of Cytochromecand Horseradish Peroxidase at the Galleries of $\hat{l}\pm$ -Zirconium Phosphate. Chemistry of Materials, 1997, 9, 863-870.	6.7	126