
Orin C Shanks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8714149/publications.pdf Version: 2024-02-01

ODIN C SHANKS

#	Article	IF	CITATIONS
1	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
2	Performance of NIST SRM® 2917 with 13 recreational water quality monitoring qPCR assays. Water Research, 2022, 212, 118114.	11.3	10
3	Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). Science of the Total Environment, 2022, 831, 154861.	8.0	9
4	ldentifying septic pollution exposure routes during a waterborne norovirus outbreak - A new application for human-associated microbial source tracking qPCR. Journal of Microbiological Methods, 2021, 180, 106091.	1.6	15
5	Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. Frontiers in Water, 2021, 3, 626849.	2.3	15
6	Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. Water Research, 2021, 192, 116845.	11.3	13
7	Variability in RT-qPCR assay parameters indicates unreliable SARS-CoV-2 RNA quantification for wastewater surveillance. Water Research, 2021, 203, 117516.	11.3	68
8	Microbial source tracking. , 2020, , 71-87.		1
9	Contamination Scenario Matters when Using Viral and Bacterial Human-Associated Genetic Markers as Indicators of a Health Risk in Untreated Sewage-Impacted Recreational Waters. Environmental Science & Technology, 2020, 54, 13101-13109.	10.0	7
10	Fecal pollution source characterization at non-point source impacted beaches under dry and wet weather conditions. Water Research, 2020, 182, 116014.	11.3	32
11	Viral and Bacterial Fecal Indicators in Untreated Wastewater across the Contiguous United States Exhibit Geospatial Trends. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
12	Large-scale implementation of standardized quantitative real-time PCR fecal source identification procedures in the Tillamook Bay Watershed. PLoS ONE, 2019, 14, e0216827.	2.5	18
13	Extended persistence of general and cattle-associated fecal indicators in marine and freshwater environment. Science of the Total Environment, 2019, 650, 1292-1302.	8.0	29
14	Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. Water Research, 2018, 140, 200-210.	11.3	13
15	Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. Environmental Science & Technology, 2018, 52, 5076-5084.	10.0	73
16	A human fecal contamination score for ranking recreational sites using the HF183/BacR287 quantitative real-time PCR method. Water Research, 2018, 128, 148-156.	11.3	33
17	Evidence of Genetic Fecal Marker Interactions between Water Column and Periphyton in Artificial Streams. ACS Omega, 2018, 3, 10107-10113.	3.5	3
18	Comparison of somatic and F+ coliphage enumeration methods with large volume surface water samples. Journal of Virological Methods, 2018, 261, 63-66.	2.1	8

ORIN C SHANKS

#	Article	IF	CITATIONS
19	Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. Environmental Science & Technology, 2017, 51, 9146-9154.	10.0	236
20	Differential decomposition of bacterial and viral fecal indicators in common human pollution types. Water Research, 2016, 105, 591-601.	11.3	32
21	Occurrence of Host-Associated Fecal Markers on Child Hands, Household Soil, and Drinking Water in Rural Bangladeshi Households. Environmental Science and Technology Letters, 2016, 3, 393-398.	8.7	69
22	Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Applied and Environmental Microbiology, 2016, 82, 2773-2782.	3.1	51
23	ldentification of Specialists and Abundance-Occupancy Relationships among Intestinal Bacteria of <i>Aves</i> , Mammalia, and Actinopterygii. Applied and Environmental Microbiology, 2016, 82, 1496-1503.	3.1	3
24	Occurrence of Host-Associated Fecal Markers on Child Hands, Household Soil, and Drinking Water in Rural Bangladeshi Households. Environmental Science and Technology Letters, 2016, 3, 393-398.	8.7	26
25	Overview of Microbial Source Tracking Methods Targeting Human Fecal Pollution Sources. , 2015, , 3.4.3-1-3.4.3-8.		1
26	Human-Associated Fecal Quantitative Polymerase Chain Reaction Measurements and Simulated Risk of Gastrointestinal Illness in Recreational Waters Contaminated with Raw Sewage. Environmental Science and Technology Letters, 2015, 2, 270-275.	8.7	99
27	Comparison of Sewage and Animal Fecal Microbiomes by Using Oligotyping Reveals Potential Human Fecal Indicators in Multiple Taxonomic Groups. Applied and Environmental Microbiology, 2015, 81, 7023-7033.	3.1	57
28	Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi river water. Water Research, 2015, 69, 30-39.	11.3	49
29	Biotic Interactions and Sunlight Affect Persistence of Fecal Indicator Bacteria and Microbial Source Tracking Genetic Markers in the Upper Mississippi River. Applied and Environmental Microbiology, 2014, 80, 3952-3961.	3.1	63
30	Factors affecting the presence of human-associated and fecal indicator real-time quantitative PCR genetic markers in urban-impacted recreational beaches. Water Research, 2014, 64, 196-208.	11.3	47
31	Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples. Applied and Environmental Microbiology, 2014, 80, 3086-3094.	3.1	221
32	Age-Related Shifts in the Density and Distribution of Genetic Marker Water Quality Indicators in Cow and Calf Feces. Applied and Environmental Microbiology, 2014, 80, 1588-1594.	3.1	10
33	Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters. Journal of Environmental Management, 2014, 136, 112-120.	7.8	21
34	New Performance Metrics for Quantitative Polymerase Chain Reaction-Based Microbial Source Tracking Methods. Environmental Science and Technology Letters, 2014, 1, 20-25.	8.7	12
35	Development of Rapid Canine Fecal Source Identification PCR-Based Assays. Environmental Science & Technology, 2014, 48, 11453-11461.	10.0	35
36	Human Fecal Source Identification with Real-Time Quantitative PCR. Methods in Molecular Biology, 2014, 1096, 85-99.	0.9	5

ORIN C SHANKS

#	Article	IF	CITATIONS
37	Marine and Freshwater Fecal Indicators and Source Identification. , 2014, , 1-33.		0
38	Sewage reflects the distribution of human faecal <i><scp>L</scp>achnospiraceae</i> . Environmental Microbiology, 2013, 15, 2213-2227.	3.8	88
39	Performance of forty-one microbial source tracking methods: A twenty-seven lab evaluation study. Water Research, 2013, 47, 6812-6828.	11.3	253
40	Recommendations following a multi-laboratory comparison of microbial source tracking methods. Water Research, 2013, 47, 6829-6838.	11.3	53
41	Evaluation of the repeatability and reproducibility of a suite of qPCR-based microbial source tracking methods. Water Research, 2013, 47, 6839-6848.	11.3	56
42	Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers – Is it feasible?. Water Research, 2013, 47, 6849-6861.	11.3	39
43	Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. Water Research, 2013, 47, 6921-6928.	11.3	45
44	Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research, 2013, 47, 6897-6908.	11.3	117
45	Characterization of fecal concentrations in human and other animal sources by physical, culture-based, and quantitative real-time PCR methods. Water Research, 2013, 47, 6873-6882.	11.3	52
46	Performance evaluation of canine-associated Bacteroidales assays in a multi-laboratory comparison study. Water Research, 2013, 47, 6909-6920.	11.3	48
47	Comparison of the Microbial Community Structures of Untreated Wastewaters from Different Geographic Locales. Applied and Environmental Microbiology, 2013, 79, 2906-2913.	3.1	142
48	Differential Decay of Enterococci and Escherichia coli Originating from Two Fecal Pollution Sources. Applied and Environmental Microbiology, 2013, 79, 2488-2492.	3.1	45
49	Marine and Freshwater Fecal Indicators and Source Identification. , 2013, , 199-235.		3
50	Dramatic Improvements in Beach Water Quality Following Gull Removal. Environmental Science & Technology, 2012, 46, 10206-10213.	10.0	80
51	Interlaboratory Comparison of Real-Time PCR Protocols for Quantification of General Fecal Indicator Bacteria. Environmental Science & Technology, 2012, 46, 945-953.	10.0	72
52	Distribution of Genetic Marker Concentrations for Fecal Indicator Bacteria in Sewage and Animal Feces. Applied and Environmental Microbiology, 2012, 78, 4225-4232.	3.1	33
53	Community Structures of Fecal Bacteria in Cattle from Different Animal Feeding Operations. Applied and Environmental Microbiology, 2011, 77, 2992-3001.	3.1	342
54	Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution. Environmental Science & Technology, 2011, 45, 5652-5659.	10.0	53

ORIN C SHANKS

#	Article	IF	CITATIONS
55	Differential decay of human faecal <i>Bacteroides</i> in marine and freshwater. Environmental Microbiology, 2011, 13, 3235-3249.	3.8	102
56	Decay of Bacterial Pathogens, Fecal Indicators, and Real-Time Quantitative PCR Genetic Markers in Manure-Amended Soils. Applied and Environmental Microbiology, 2011, 77, 4839-4848.	3.1	95
57	Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected Bacteroidales species and human fecal waste by qPCR. Systematic and Applied Microbiology, 2010, 33, 348-357.	2.8	188
58	Performance Assessment PCR-Based Assays Targeting <i>Bacteroidales</i> Genetic Markers of Bovine Fecal Pollution. Applied and Environmental Microbiology, 2010, 76, 1359-1366.	3.1	81
59	Improved strategies and optimization of calibration models for real-time PCR absolute quantification. Water Research, 2010, 44, 4726-4735.	11.3	86
60	Performance of PCR-Based Assays Targeting <i>Bacteroidales</i> Genetic Markers of Human Fecal Pollution in Sewage and Fecal Samples. Environmental Science & Technology, 2010, 44, 6281-6288.	10.0	106
61	Quantitative PCR for Genetic Markers of Human Fecal Pollution. Applied and Environmental Microbiology, 2009, 75, 5507-5513.	3.1	135
62	A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards. BMC Bioinformatics, 2008, 9, 120.	2.6	77
63	Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution. Applied and Environmental Microbiology, 2008, 74, 745-752.	3.1	183
64	Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays. Applied and Environmental Microbiology, 2008, 74, 6839-6847.	3.1	23
65	Identification of Bacterial DNA Markers for the Detection of Human Fecal Pollution in Water. Applied and Environmental Microbiology, 2007, 73, 2416-2422.	3.1	61
66	Identification of chicken-specific fecal microbial sequences using a metagenomic approach. Water Research, 2007, 41, 3561-3574.	11.3	73
67	Animal DNA in PCR reagents plagues ancient DNA research. Journal of Archaeological Science, 2007, 34, 1361-1366.	2.4	142
68	Competitive Metagenomic DNA Hybridization Identifies Host-Specific Microbial Genetic Markers in Cow Fecal Samples. Applied and Environmental Microbiology, 2006, 72, 4054-4060.	3.1	77
69	Use of competitive DNA hybridization to identify differences in the genomes of bacteria. Journal of Microbiological Methods, 2006, 66, 321-330.	1.6	19
70	Basin-Wide Analysis of the Dynamics of Fecal Contamination and Fecal Source Identification in Tillamook Bay, Oregon. Applied and Environmental Microbiology, 2006, 72, 5537-5546.	3.1	89
71	DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming. Journal of Archaeological Science, 2005, 32, 27-38.	2.4	29
72	DNA AND PROTEIN RECOVERY FROM WASHED EXPERIMENTAL STONE TOOLS*. Archaeometry, 2004, 46, 663-672.	1.3	20

#	Article	IF	CITATIONS
73	Recovery of Protein and DNA Trapped in Stone Tool Microcracks. Journal of Archaeological Science, 2001, 28, 965-972.	2.4	42
74	Protein Analysis of Bugas-Holding Tools: New Trends in Immunological Studies. Journal of Archaeological Science, 1999, 26, 1183-1191.	2.4	32