## Halime O Paksoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8713096/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Review on using microencapsulated phase change materials (PCM) in building applications. Energy and Buildings, 2015, 106, 134-155.                                                                            | 3.1 | 309       |
| 2  | Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites. Solar Energy Materials and Solar Cells, 2015, 137, 61-67.                                                 | 3.0 | 224       |
| 3  | Utilization of phase change materials in solar domestic hot water systems. Renewable Energy, 2009, 34, 1639-1643.                                                                                             | 4.3 | 204       |
| 4  | Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research, 2006, 30, 741-749.                                             | 2.2 | 195       |
| 5  | Review on sensible thermal energy storage for industrial solar applications and sustainability aspects. Solar Energy, 2020, 209, 135-169.                                                                     | 2.9 | 192       |
| 6  | Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 2014, 120, 536-542.                            | 3.0 | 183       |
| 7  | Microencapsulation of a fatty acid with Poly(melamine–urea–formaldehyde). Energy Conversion and<br>Management, 2014, 80, 382-390.                                                                             | 4.4 | 126       |
| 8  | Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials. Solar Energy Materials and Solar Cells, 2017, 159, 1-7.                                | 3.0 | 103       |
| 9  | Thermal enhancement of concrete by adding bio-based fatty acids as phase change materials. Energy and Buildings, 2015, 106, 156-163.                                                                          | 3.1 | 86        |
| 10 | Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renewable Energy, 2000, 19, 117-122.                                                         | 4.3 | 85        |
| 11 | Unconventional experimental technologies available for phase change materials (PCM)<br>characterization. Part 1. Thermophysical properties. Renewable and Sustainable Energy Reviews, 2015,<br>43, 1399-1414. | 8.2 | 85        |
| 12 | Thermal enhancement of paraffin as a phase change material with nanomagnetite. Solar Energy<br>Materials and Solar Cells, 2014, 126, 56-61.                                                                   | 3.0 | 82        |
| 13 | Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage. Applied Energy, 2015, 150, 335-340.                                                                     | 5.1 | 72        |
| 14 | Improving performance of household refrigerators by incorporating phase change materials.<br>International Journal of Refrigeration, 2015, 57, 173-185.                                                       | 1.8 | 66        |
| 15 | Aquifer thermal storage (ATES) for air-conditioning of a supermarket in Turkey. Renewable Energy, 2004, 29, 1991-1996.                                                                                        | 4.3 | 62        |
| 16 | CO 2 mitigation accounting for Thermal Energy Storage (TES) case studies. Applied Energy, 2015, 155, 365-377.                                                                                                 | 5.1 | 58        |
| 17 | Robust microencapsulated phase change materials in concrete mixes for sustainable buildings.<br>International Journal of Energy Research, 2017, 41, 113-126.                                                  | 2.2 | 58        |
| 18 | Novel shapeable phase change material (PCM) composites for thermal energy storage (TES) applications. Solar Energy Materials and Solar Cells, 2018, 174, 380-387.                                             | 3.0 | 58        |

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A comparative study on corrosion behavior of rebar in concrete with fatty acid additive as phase change material. Construction and Building Materials, 2017, 143, 490-500.                                                                                                          | 3.2 | 57        |
| 20 | Polystyrene-based caprylic acid microencapsulation for thermal energy storage. Solar Energy<br>Materials and Solar Cells, 2017, 159, 235-242.                                                                                                                                       | 3.0 | 56        |
| 21 | Energetic and exergetic efficiency of latent heat storage system for greenhouse heating. Renewable<br>Energy, 1999, 16, 691-694.                                                                                                                                                    | 4.3 | 55        |
| 22 | Investigating thermal properties of using nano-tubular ZnO powder in paraffin as phase change<br>material composite for thermal energy storage. Composites Part B: Engineering, 2017, 126, 88-93.                                                                                   | 5.9 | 49        |
| 23 | The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. International Journal of Energy Research, 2016, 40, 198-206.                                                                                                   | 2.2 | 47        |
| 24 | Energy storage key performance indicators for building application. Sustainable Cities and Society, 2018, 40, 54-65.                                                                                                                                                                | 5.1 | 43        |
| 25 | Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Conversion and Management, 2013, 74, 446-453.                                                                                                      | 4.4 | 42        |
| 26 | Heat transfer enhancement of fatty acids when used as PCMs in thermal energy storage. International<br>Journal of Energy Research, 2008, 32, 135-143.                                                                                                                               | 2.2 | 41        |
| 27 | 2 years of monitoring results from passive solar energy storage in test cabins with phase change materials. Solar Energy, 2020, 200, 29-36.                                                                                                                                         | 2.9 | 41        |
| 28 | Exploiting solar energy potential through thermal energy storage in Slovenia and Turkey. Renewable and Sustainable Energy Reviews, 2013, 25, 442-461.                                                                                                                               | 8.2 | 39        |
| 29 | Performance of laboratory scale packed-bed thermal energy storage using new demolition waste based sensible heat materials for industrial solar applications. Solar Energy, 2020, 211, 1335-1346.                                                                                   | 2.9 | 38        |
| 30 | Phase Change Material Sandwich Panels for Managing Solar Gain in Buildings. Journal of Solar Energy<br>Engineering, Transactions of the ASME, 2009, 131, .                                                                                                                          | 1.1 | 37        |
| 31 | Encapsulation of stearic acid with different PMMA-hybrid shell materials for thermotropic materials.<br>Solar Energy, 2019, 184, 466-476.                                                                                                                                           | 2.9 | 35        |
| 32 | Preparation, characterization, and thermal properties of novel fire-resistant microencapsulated<br>phase change materials based on paraffin and a polystyrene shell. RSC Advances, 2020, 10, 24134-24144.                                                                           | 1.7 | 34        |
| 33 | Unconventional experimental technologies used for phase change materials (PCM) characterization:<br>part 2 – morphological and structural characterization, physico-chemical stability and mechanical<br>properties. Renewable and Sustainable Energy Reviews, 2015, 43, 1415-1426. | 8.2 | 33        |
| 34 | Three dimensional rosette-rod TiO2/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 868, 159133.                                                                                                                      | 2.8 | 33        |
| 35 | Direct Incorporation of Butyl Stearate as Phase Change Material into Concrete for Energy Saving in Buildings. Journal of Clean Energy Technologies, 2017, 5, 64-68.                                                                                                                 | 0.1 | 32        |
| 36 | Enhanced photoelectrochemical water splitting using gadolinium doped titanium dioxide nanorod array photoanodes. International Journal of Hydrogen Energy, 2020, 45, 2709-2719.                                                                                                     | 3.8 | 27        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Thermal analysis of heat storage materials. Thermochimica Acta, 1993, 213, 211-221.                                                                                                                                                 | 1.2 | 26        |
| 38 | The Preparation and Characterization of Chitosan–Gelatin Microcapsules and Microcomposites with<br>Fatty Acids as Thermal Energy Storage Materials. Energy Technology, 2015, 3, 503-508.                                            | 1.8 | 26        |
| 39 | Thermal buffering effect of a packaging design with microencapsulated phase change material.<br>International Journal of Energy Research, 2019, 43, 4495-4505.                                                                      | 2.2 | 22        |
| 40 | Ground water level influence on thermal response test in Adana, Turkey. International Journal of<br>Energy Research, 2008, 32, 629-633.                                                                                             | 2.2 | 21        |
| 41 | Criss-crossed α-Fe2O3 nanorods/Bi2S3 heterojunction for enhanced photoelectrochemical water splitting. Fuel, 2022, 324, 124477.                                                                                                     | 3.4 | 21        |
| 42 | Developing microencapsulated 12-hydroxystearic acid (HSA) for phase change material use.<br>International Journal of Energy Research, 2018, 42, 3351-3360.                                                                          | 2.2 | 20        |
| 43 | Laboratory investigation on the use of thermally enhanced phase change material to improve the performance of borehole heat exchangers for ground source heat pumps. International Journal of Energy Research, 2019, 43, 4148-4156. | 2.2 | 18        |
| 44 | Using demolition wastes from urban regeneration as sensible thermal energy storage material.<br>International Journal of Energy Research, 2019, 43, 6454-6460.                                                                      | 2.2 | 17        |
| 45 | IEA SHC Task 42 / ECES Annex 29 WG A1: Engineering and Processing of PCMs, TCMs and Sorption Materials. Energy Procedia, 2016, 91, 207-217.                                                                                         | 1.8 | 14        |
| 46 | Comprehensive investigation of butyl stearate as a multifunctional smart concrete additive for<br>energyâ€efficient buildings. International Journal of Energy Research, 2019, 43, 7146.                                            | 2.2 | 13        |
| 47 | Calculations of thermodynamic derivative properties from the NRTL and UNIQUAC models.<br>Thermochimica Acta, 1997, 303, 129-136.                                                                                                    | 1.2 | 12        |
| 48 | New multilayered microencapsulated phase change material with <scp>CaCO<sub>3</sub></scp> and Ag shells. Energy Storage, 2021, 3, e214.                                                                                             | 2.3 | 12        |
| 49 | Determining thermal properties of heat storage materials using the twin bath method. Energy Conversion and Management, 1996, 37, 261-268.                                                                                           | 4.4 | 11        |
| 50 | CO <sub align="right">2 mitigation with thermal energy storage. International Journal of Global<br/>Warming, 2009, 1, 253.</sub>                                                                                                    | 0.2 | 11        |
| 51 | Designing behenic acid microcapsules as novel phase change material for thermal energy storage applications at medium temperature. International Journal of Energy Research, 2020, 44, 3922-3933.                                   | 2.2 | 11        |
| 52 | Characterization of Concrete Mixes Containing Phase Change Materials. IOP Conference Series:<br>Materials Science and Engineering, 2017, 251, 012118.                                                                               | 0.3 | 10        |
| 53 | Direct impregnation and characterization of Colemanite/Ulexite-Mg(OH)2 paraffin based form-stable phase change composites. Solar Energy Materials and Solar Cells, 2019, 195, 346-352.                                              | 3.0 | 10        |
| 54 | Correlation of heats of mixing data by the NRTL and UNIQUAC models Thermochimica Acta, 1992, 194, 329-341.                                                                                                                          | 1.2 | 9         |

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Correlation of heats of mixing data by the NRTL and UNIQUAC models. Thermochimica Acta, 1992, 194, 343-359.                                                            | 1.2 | 9         |
| 56 | GREENHOUSE HEATING WITH SOLAR ENERGY AND PHASE CHANGE ENERGY STORAGE. Acta Horticulturae, 1997, , 63-70.                                                               | 0.1 | 9         |
| 57 | Sustainable energy management. Management of Environmental Quality, 2015, 26, 764-790.                                                                                 | 2.2 | 9         |
| 58 | Underground thermal heat storage and ground source heat pump activities in Turkey. Solar Energy, 2020, 200, 22-28.                                                     | 2.9 | 9         |
| 59 | Thermal energy storage in fluidized bed using microencapsulated phase change materials. Solar<br>Energy, 2021, 222, 27-34.                                             | 2.9 | 9         |
| 60 | Calculation of excess heat capacities for liquid mixtures. Thermochimica Acta, 1992, 198, 329-344.                                                                     | 1.2 | 8         |
| 61 | The performance of UNIFAC and related group contribution models part II. Prediction of Henry's law constants. Thermochimica Acta, 1996, 287, 251-259.                  | 1.2 | 8         |
| 62 | Thermally enhanced paraffin for solar applications. Energy Procedia, 2012, 30, 350-352.                                                                                | 1.8 | 8         |
| 63 | AQUIFER THERMAL ENERGY STORAGE APPLICATION IN GREENHOUSE CLIMATIZATION. Acta Horticulturae, 2009, , 143-148.                                                           | 0.1 | 7         |
| 64 | 2.14 Latent Heat Storage Systems. , 2018, , 396-434.                                                                                                                   |     | 6         |
| 65 | The performance of UNIFAC and related group contribution models part I. Prediction of infinite dilution activity coefficients. Thermochimica Acta, 1996, 287, 235-249. | 1.2 | 4         |
| 66 | Packed-bed sensible thermal energy storage system using demolition wastes for concentrated solar power plants. E3S Web of Conferences, 2019, 113, 01014.               | 0.2 | 4         |
| 67 | 2.30 Novel Building Materials. , 2018, , 980-1017.                                                                                                                     |     | 3         |
| 68 | Characterization of demolition waste powder to be processed as sensible thermal energy storage material. Solar Energy Materials and Solar Cells, 2021, 230, 111283.    | 3.0 | 3         |
| 69 | Endüstriyel Uygulamalarda Güneş Enerjisinden Termal Olarak Yararlanma. Çukurova Üniversitesi<br>Mühendislik-Mimarlık Fakültesi Dergisi, 0, , 769-782.                  | 0.1 | 2         |
| 70 | Excess Heat Capacity Surfaces for Water-Alkanol Mixtures by the UNIQUAC Model. Industrial &<br>Engineering Chemistry Research, 1995, 34, 921-927.                      | 1.8 | 1         |
| 71 | Microcapsulation and Macrocapsulation of Phase Change Materials by Emulsion Co-polymerization Method. , 2015, , 229-238.                                               |     | 1         |
| 72 | Energy Analysis of a Complex Heating System with Phase Change Material (PCM) Thermal Storage in Different Climatic Conditions. , 0, , .                                |     | 1         |

| #  | ARTICLE                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Excess enthalpy surfaces for n-heptane + carboxylic acid, amylamine and n-octanol mixtures by the nrtl model. Thermochimica Acta, 1995, 261, 33-45.                                                                    | 1.2 | 0         |
| 74 | Guest editorial for the special issue on progress in energy storage systems. International Journal of Energy Research, 2019, 43, 6060-6060.                                                                            | 2.2 | 0         |
| 75 | Thermal energy storage systems for greenhouse technology. , 2021, , 699-715.                                                                                                                                           |     | 0         |
| 76 | Analysis of labour market needs for engineers with enhanced knowledge in sustainable renewable<br>energy solutions in the built environment in some Asian countries. E3S Web of Conferences, 2021, 238,<br>07004.      | 0.2 | 0         |
| 77 | Longâ€ŧerm stability of sensible thermal energy storage materials developed from demolition wastes<br>interacting with hot heat transfer fluid. International Journal of Energy Research, 2021, 45,<br>21451-21463.    | 2.2 | 0         |
| 78 | Encapsulation of Phase Change Materials. , 2021, , .                                                                                                                                                                   |     | 0         |
| 79 | Role of Energy Storage in 100% Renewable Urban Areas. Lecture Notes in Energy, 2020, , 411-437.                                                                                                                        | 0.2 | 0         |
| 80 | Design of Energy-Efficient White Portland Cement Mortars for Digital Fabrication. RILEM Bookseries, 2020, , 64-72.                                                                                                     | 0.2 | 0         |
| 81 | Isıl Enerji Depolama Uygulamaları için n-heptedekan@MgCO3 ve n-heptadekan@MgCO3@Ag<br>Mikrokapsüllerinin Yeşil Kimya ile Sentezi. Journal of the Faculty of Engineering and Architecture of<br>Gazi University, 0, , . | 0.3 | 0         |