Shuai Tan

List of Publications by Citations

Source: https://exaly.com/author-pdf/8713065/shuai-tan-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

697 16 21 21 h-index g-index citations papers 823 3.83 21 7.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
21	Role of Additives in Composite PEI/Oxide COIAdsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in COICapture from Simulated Ambient Air. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 24748-59	9.5	82
20	Propane Dehydrogenation over Alumina-Supported Iron/Phosphorus Catalysts: Structural Evolution of Iron Species Leading to High Activity and Propylene Selectivity. <i>ACS Catalysis</i> , 2016 , 6, 5673	3 ⁻⁵ 683	79
19	Facile synthesis of hierarchical MoS2Barbon microspheres as a robust anode for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 9653-9660	13	68
18	Catalytic propane dehydrogenation over In2O3©a2O3 mixed oxides. <i>Applied Catalysis A: General</i> , 2015 , 498, 167-175	5.1	62
17	Poly(ethylenimine)-Functionalized Monolithic Alumina Honeycomb Adsorbents for CO2 Capture from Air. <i>ChemSusChem</i> , 2016 , 9, 1859-68	8.3	45
16	A Mesoporous Cobalt Aluminate Spinel Catalyst for Nonoxidative Propane Dehydrogenation. <i>ChemCatChem</i> , 2017 , 9, 3330-3337	5.2	44
15	Propane Dehydrogenation over In2O3La2O3La2O3 Mixed Oxides. <i>ChemCatChem</i> , 2016 , 8, 214-221	5.2	41
14	Metal Organic Frameworks for Selective Adsorption of t-Butyl Mercaptan from Natural Gas. <i>Energy & Energy Energy</i> 8, 2015, 29, 3312-3321	4.1	35
13	Significantly increasing porosity of mesoporous carbon by NaNH2 activation for enhanced CO2 adsorption. <i>Microporous and Mesoporous Materials</i> , 2016 , 230, 100-108	5.3	34
12	Harnessing strong metal-support interactions via a reverse route. <i>Nature Communications</i> , 2020 , 11, 304	42 7.4	33
11	Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials. <i>ACS Applied Materials & ACS Applied & A</i>	9.5	26
10	Amine Functionalization of Microsized and Nanosized Mesoporous Carbons for Carbon Dioxide Capture. <i>Industrial & Capture Captu</i>	3.9	24
9	Structure design and photocatalytic properties of one-dimensional SnO2-TiO2 composites. <i>Nanoscale Research Letters</i> , 2015 , 10, 200	5	20
8	One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters. <i>ACS Applied Materials & ACS Applied & ACS ACS APPLIED & ACS ACS APPLIED & ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	20
7	An In Situ Spectroscopic Study of Prochiral Reactant©hiral Modifier Interactions on Palladium Catalyst: Case of Alkenoic Acid and Cinchonidine in Various Solvents. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 18043-18052	3.8	17
6	Three-Dimensional Clustered Nanostructures for Microfluidic Surface-Enhanced Raman Detection. <i>ACS Applied Materials & Detection and Supplied Materials & Detection and Detection</i>	9.5	16
5	Insight into the Selectivity of Isopropanol Conversion at Strontium Titanate (100) Surfaces: A Combination Kinetic and Spectroscopic Study. <i>ACS Catalysis</i> , 2017 , 7, 8118-8129	13.1	14

LIST OF PUBLICATIONS

4	In situ ATR-IR study of prochiral 2-methyl-2-pentenoic acid adsorption on Al2O3 and Pd/Al2O3. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 19573-9	3.6	14
3	Kinetic Study of Asymmetric Hydrogenation of ⊞Unsaturated Carboxylic Acid Over Cinchona-Modified Pd/Al2O3 Catalyst. <i>Topics in Catalysis</i> , 2012 , 55, 512-517	2.3	12
2	Strong Effect of B-Site Substitution on the Reactivity of Layered Perovskite Oxides Probed via Isopropanol Conversion 2019 , 1, 230-236		7
1	Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy. <i>Review of Scientific Instruments</i> , 2018 , 89, 014101	1.7	4