List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712347/publications.pdf Version: 2024-02-01

		19608	28224
310	13,401	61	105
papers	citations	h-index	g-index
323	323	323	13583
all docs	docs citations	times ranked	citing authors

Τοςμινικι Μορι

#	Article	IF	CITATIONS
1	Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation. Journal of the American Chemical Society, 2010, 132, 6294-6295.	6.6	1,176
2	Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 2005, 17, 1648-1652.	11.1	512
3	Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy and Environmental Science, 2011, 4, 4517.	15.6	408
4	Highly Ordered Nitrogenâ€Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation. Angewandte Chemie - International Edition, 2017, 56, 8481-8485.	7.2	345
5	Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. Journal of Molecular Catalysis A, 2007, 266, 149-157.	4.8	315
6	Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. Journal of the European Ceramic Society, 2000, 20, 2395-2405.	2.8	308
7	Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. Journal of Materials Chemistry, 2012, 22, 6575.	6.7	274
8	Preparation of Highly Ordered Nitrogenâ€Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid. Advanced Functional Materials, 2012, 22, 3596-3604.	7.8	194
9	Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catalysis Communications, 2007, 8, 1377-1382.	1.6	189
10	Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems. Solid State Ionics, 2002, 154-155, 461-466.	1.3	185
11	Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 2007, 251, 2562-2591.	9.5	179
12	Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. Journal of Materials Chemistry, 2007, 17, 1819.	6.7	177
13	Synthesis of Mesoporous BN and BCN Exhibiting Large Surface Areas via Templating Methods. Chemistry of Materials, 2005, 17, 5887-5890.	3.2	164
14	Low temperature processing of dense samarium-doped CeO2 ceramics: sintering and grain growth behaviors. Acta Materialia, 2004, 52, 2221-2228.	3.8	163
15	Fabrication of Transparent Yttria Ceramics by the Lowâ€īemperature Synthesis of Yttrium Hydroxide. Journal of the American Ceramic Society, 2002, 85, 1725-1729.	1.9	159
16	New families of mesoporous materials. Science and Technology of Advanced Materials, 2006, 7, 753-771.	2.8	156
17	Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. Journal of Materials Chemistry, 2005, 15, 5122.	6.7	144
18	Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry, 2012, 22, 9831.	6.7	140

#	Article	lF	CITATIONS
19	Synthesis of Nitrogenâ€Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem, 2012, 5, 700-708.	3.6	136
20	Polymeric Carbon Nitrides: Semiconducting Properties and Emerging Applications in Photocatalysis and Photoelectrochemical Energy Conversion. Science of Advanced Materials, 2012, 4, 282-291.	0.1	136
21	One-Pot Separation of Tea Components through Selective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage. Journal of the American Chemical Society, 2007, 129, 11022-11023.	6.6	134
22	Oxygen-vacancy ordering in lanthanide-doped ceria: Dopant-type dependence and structure model. Physical Review B, 2008, 77, .	1.1	133
23	Microstructural and Metalâ^'Support Interactions of the Ptâ^'CeO ₂ /C Catalysts for Direct Methanol Fuel Cell Application. Langmuir, 2011, 27, 3859-3866.	1.6	133
24	Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials, 2007, 19, 4367-4372.	3.2	127
25	Role of Cerium Oxide in the Enhancement of Activity for the Oxygen Reduction Reaction at Pt–CeO _{<i>x</i>} Nanocomposite Electrocatalyst - An in Situ Electrochemical X-ray Absorption Fine Structure Study. Journal of Physical Chemistry C, 2012, 116, 10098-10102.	1.5	121
26	Lowâ€Temperature Fabrication of Transparent Yttrium Aluminum Garnet (YAG) Ceramics without Additives. Journal of the American Ceramic Society, 2000, 83, 961-963.	1.9	120
27	Oxygen vacancy ordering in heavily rare-earth-doped ceria. Applied Physics Letters, 2006, 89, 171911.	1.5	119
28	Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Materialia, 2006, 54, 3737-3746.	3.8	117
29	Putting the â€~N' in ACENE: Pyrazinacenes and their structural relatives. Organic and Biomolecular Chemistry, 2011, 9, 5005.	1.5	111
30	Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body. Solid State Ionics, 2004, 175, 641-649.	1.3	107
31	Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules. Journal of Porous Materials, 2006, 13, 379-383.	1.3	107
32	Photoluminescence study of mixtures of anatase and rutile TiO2 nanoparticles: Influence of charge transfer between the nanoparticles on their photoluminescence excitation bands. Chemical Physics Letters, 2005, 409, 81-84.	1.2	106
33	Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous and Mesoporous Materials, 2008, 109, 398-404.	2.2	105
34	Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Materialia, 2001, 49, 419-426.	3.8	101
35	Controlling the textural parameters of mesoporous carbon materials. Microporous and Mesoporous Materials, 2007, 100, 20-26.	2.2	100
36	Synthesis of Mg–Al spinel powder via precipitation using ammonium bicarbonate as the precipitant. Journal of the European Ceramic Society, 2001, 21, 139-148.	2.8	97

#	Article	IF	CITATIONS
37	Multiple Doping Effect on the Electrical Conductivity in the (Ce ₁₋ <i>_x</i> ₋ <i><sut (M = Ca, Sr) System. Electrochemistry, 2000, 68, 455-459.</sut </i>	v> ;y& lt;/s	ub &g t;</i&
38	A wet-chemical process yielding reactive magnesium aluminate spinel (MgAl2O4) powder. Ceramics International, 2001, 27, 481-489.	2.3	93
39	Thermoelectric properties of homologous p- and n-type boron-rich borides. Journal of Solid State Chemistry, 2006, 179, 2908-2915.	1.4	90
40	Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A, 2013, 1, 2913.	5.2	90
41	Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization. Ultramicroscopy, 2016, 170, 43-59.	0.8	90
42	Highly Crystalline and Conductive Nitrogenâ€Đoped Mesoporous Carbon with Graphitic Walls and Its Electrochemical Performance. Chemistry - A European Journal, 2011, 17, 3390-3397.	1.7	89
43	Reactive Ceria Nanopowders via Carbonate Precipitation. Journal of the American Ceramic Society, 2002, 85, 2376-2378.	1.9	86
44	Improvement of Grain-Boundary Conductivity of 8 mol % Yttria-Stabilized Zirconia by Precursor Scavenging of Siliceous Phase. Journal of the Electrochemical Society, 2000, 147, 2822.	1.3	85
45	Platinum-Doped CeO ₂ Thin Film Catalysts Prepared by Magnetron Sputtering. Langmuir, 2010, 26, 12824-12831.	1.6	84
46	Preparation of High-Purity ZrSiO4 Powder Using Sol-Gel Processing and Mechanical Properties of the Sintered Body. Journal of the American Ceramic Society, 1992, 75, 2420-2426.	1.9	82
47	Threeâ€Dimensional Ultralargeâ€Pore <i>la</i> 3 <i>d</i> Mesoporous Silica with Various Pore Diameters and Their Application in Biomolecule Immobilization. Chemistry - A European Journal, 2008, 14, 11529-11538.	1.7	80
48	Fabrication of Translucent Magnesium Aluminum Spinel Ceramics. Journal of the American Ceramic Society, 2000, 83, 2866-2868.	1.9	78
49	Lowâ€Temperature Synthesis of Praseodymiumâ€Đoped Ceria Nanopowders. Journal of the American Ceramic Society, 2002, 85, 3105-3107.	1.9	75
50	Activity of oxygen reduction reaction on small amount of amorphous CeO promoted Pt cathode for fuel cell application. Electrochimica Acta, 2011, 56, 3874-3883.	2.6	75
51	Fe–N–C Artificial Enzyme: Activation of Oxygen for Dehydrogenation and Monoxygenation of Organic Substrates under Mild Condition and Cancer Therapeutic Application. ACS Applied Materials & Interfaces, 2018, 10, 35327-35333.	4.0	73
52	Synthesis and Characterization of Nano-Hetero-Structured Dy Doped CeO2 Solid Electrolytes Using a Combination of Spark Plasma Sintering and Conventional Sintering. Journal of the American Ceramic Society, 2005, 88, 1981-1984.	1.9	71
53	Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 1. Synthesis and Characterization. Chemistry of Materials, 2001, 13, 2913-2920.	3.2	70
54	Fabrication of Transparent, Sintered Sc2O3 Ceramics. Journal of the American Ceramic Society, 2005, 88, 817-821.	1.9	69

#	Article	IF	CITATIONS
55	Heat capacity and thermodynamic functions of zirconia and yttria-stabilized zirconia. Journal of Chemical Thermodynamics, 1999, 31, 831-845.	1.0	68
56	Nanocrystalline Ce1â^'xYxO2â^'x/2 (0â‰ ¤ â‰ 0 .35) Oxides via Carbonate Precipitation: Synthesis and Characterization. Journal of Solid State Chemistry, 2002, 168, 52-59.	1.4	67
57	Well-sinterable Y ₃ Al ₅ O ₁₂ Powder from Carbonate Precursor. Journal of Materials Research, 2000, 15, 1514-1523.	1.2	66
58	Pyrazinacenes: Aza Analogues of Acenes. Journal of Organic Chemistry, 2009, 74, 8914-8923.	1.7	66
59	Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Science and Technology of Advanced Materials, 2003, 4, 213-220.	2.8	65
60	Anhydrous Proton-Conducting Properties of Nafion–1,2,4-Triazole and Nafion–Benzimidazole Membranes for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2007, 154, A290.	1.3	65
61	Design of nanostructured ceria-based solid electrolytes for development of IT-SOFC. Journal of Solid State Electrochemistry, 2008, 12, 841-849.	1.2	65
62	10â€mol%â€Gd ₂ O ₃ â€Doped CeO ₂ Solid Solutions via Carbonate Coprecipitation: A Comparative Study. Journal of the American Ceramic Society, 2003, 86, 915-921.	1.9	61
63	Design of High-Quality Pt?CeO2Composite Anodes Supported by Carbon Black for Direct Methanol Fuel Cell Application. Journal of the American Ceramic Society, 2007, 90, 1291-1294.	1.9	60
64	Compositional and structural characteristics of nano-sized domains in gadolinium-doped ceria. Solid State Ionics, 2008, 179, 827-831.	1.3	58
65	An Intermediate-Temperature Biomass Fuel Cell Using Wood Sawdust and Pulp Directly as Fuel. Journal of the Electrochemical Society, 2017, 164, F557-F563.	1.3	53
66	Influence of microstructure on oxide ionic conductivity in doped CeO2 electrolytes. Journal of Electroceramics, 2006, 17, 749-757.	0.8	50
67	Electrolytic Properties and Nanostructural Features in the La[sub 2]O[sub 3]-CeO[sub 2] System. Journal of the Electrochemical Society, 2003, 150, A665.	1.3	49
68	Direct evidence of dopant segregation in Gd-doped ceria. Applied Physics Letters, 2011, 98, .	1.5	49
69	Coupling multiphase-Fe and hierarchical N-doped graphitic carbon as trifunctional electrocatalysts by supramolecular preorganization of precursors. Chemical Communications, 2017, 53, 2044-2047.	2.2	49
70	Recent Advances in Functionalized Nanoporous Carbons Derived from Waste Resources and Their Applications in Energy and Environment. Advanced Sustainable Systems, 2021, 5, .	2.7	49
71	Defects clustering and ordering in di- and trivalently doped ceria. Materials Research Bulletin, 2013, 48, 807-812.	2.7	48
72	lonic liquid-derived Fe–N/C catalysts for highly efficient oxygen reduction reaction without any supports, templates, or multi-step pyrolysis. Journal of Materials Chemistry A, 2016, 4, 6630-6638.	5.2	48

#	Article	IF	CITATIONS
73	Dopant type dependency of domain development in rare-earth-doped ceria: An explanation by computer simulation of defect clusters. Solid State Ionics, 2009, 180, 1127-1132.	1.3	47
74	TEM and XPS analysis of CaxCe1-xO2-y (x=0.05–0.5) as electrolyte materials for solid oxide fuel cells. Acta Materialia, 2009, 57, 722-731.	3.8	47
75	Stability of Ceria Supports in Pt–CeO _{<i>x</i>} /C Catalysts. Journal of Physical Chemistry C, 2011, 115, 19239-19245.	1.5	47
76	Reductive decomposition of nitrate ion to nitrogen in water on a unique hollandite photocatalyst. Applied Catalysis B: Environmental, 1999, 23, 283-289.	10.8	46
77	Organic–Inorganic Hybrid Membranes for a PEMFC Operation at Intermediate Temperatures. Journal of the Electrochemical Society, 2006, 153, A508.	1.3	45
78	Simulation of ordering in large defect clusters in gadolinium-doped ceria. Solid State Ionics, 2008, 179, 1962-1967.	1.3	45
79	Laser-assisted three-dimensional atom probe analysis of dopant distribution in Gd-doped CeO2. Scripta Materialia, 2010, 63, 332-335.	2.6	45
80	Design of Low Pt Concentration Electrocatalyst Surfaces with High Oxygen Reduction Reaction Activity Promoted by Formation of a Heterogeneous Interface between Pt and CeO _{<i>x</i>} Nanowire. ACS Applied Materials & Interfaces, 2016, 8, 9059-9070.	4.0	44
81	Preparation and characterization of novel microporous carbon nitride with very high surface area via nanocasting technique. Microporous and Mesoporous Materials, 2008, 108, 340-344.	2.2	43
82	Synthesis, characterization, and electrical conduction of 10mol% Dy2O3-doped CeO2 ceramics. Journal of the European Ceramic Society, 2005, 25, 949-956.	2.8	42
83	Present status and future prospect of design of Pt–cerium oxide electrodes for fuel cell applications. Progress in Natural Science: Materials International, 2012, 22, 561-571.	1.8	42
84	Unusual Magnetic Properties of Size ontrolled Iron Oxide Nanoparticles Grown in a Nanoporous Matrix with Tunable Pores. Angewandte Chemie - International Edition, 2009, 48, 7358-7361.	7.2	41
85	Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics. Science and Technology of Advanced Materials, 2003, 4, 229-238.	2.8	40
86	Characterization and Catalytic Performances of Three-Dimensional Mesoporous FeSBA-1 Catalysts. Journal of Physical Chemistry B, 2006, 110, 11924-11931.	1.2	40
87	Highly Ordered Nitrogenâ€Rich Mesoporous Carbon Nitrides and Their Superior Performance for Sensing and Photocatalytic Hydrogen Generation. Angewandte Chemie, 2017, 129, 8601-8605.	1.6	40
88	Electrical conductivity in the system ZrO2–Y2O3–Sc2O3. Solid State Ionics, 1998, 107, 185-189.	1.3	39
89	Fast proton conductor under anhydrous condition synthesized from 12-phosphotungstic acid and ionic liquid. Electrochimica Acta, 2007, 53, 963-967.	2.6	39
90	Formation mechanism of ZrSiO4 powders. Journal of Materials Science, 1993, 28, 4970-4973.	1.7	38

#	Article	IF	CITATIONS
91	Photoluminescence excitation bands corresponding to defect states due to oxygen vacancies in yttria-stabilized zirconia. Journal of Alloys and Compounds, 2006, 408-412, 728-731.	2.8	38
92	Hexagonally ordered mesoporous highly acidic AlSBA-15 with different morphology: An efficient catalyst for acetylation of aromatics. Microporous and Mesoporous Materials, 2008, 116, 108-115.	2.2	38
93	A structure model of nano-sized domain in Gd-doped ceria. Solid State Ionics, 2009, 180, 1414-1420.	1.3	38
94	Driving electrochemical oxygen reduction and hydrazine oxidation reaction by enzyme-inspired polymeric Cu(3,3′-diaminobenzidine) catalyst. Journal of Materials Chemistry A, 2017, 5, 17413-17420.	5.2	38
95	Influence of platinum loading on photoluminescence of TiO2 powder. Journal of Applied Physics, 2004, 96, 925-927.	1.1	37
96	Reactive 10mol% RE2O3 (RE=Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 54-59.	1.7	36
97	Compositional and valent state inhomogeneities and ordering of oxygen vacancies in terbium-doped ceria. Journal of Applied Physics, 2007, 101, 113528.	1.1	36
98	Evidence of Intragranular Segregation of Dopant Cations in Heavily Yttrium-Doped Ceria. Electrochemical and Solid-State Letters, 2007, 10, P1.	2.2	35
99	Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Microporous and Mesoporous Materials, 2009, 121, 178-184.	2.2	35
100	Improvement of Cathode Performance on Pt-CeO _{<i>x</i>} by Optimization of Electrochemical Pretreatment Condition for PEFC Application. Langmuir, 2012, 28, 16692-16700.	1.6	35
101	Application of a Crystallographic Index for Improvement of the Electrolytic Properties of the CeO2 â€â€‰Sm2 O 3 System. Journal of the Electrochemical Society, 1999, 146, 4380-4385.	1.3	34
102	Ordered structures of defect clusters in gadolinium-doped ceria. Journal of Chemical Physics, 2011, 134, 224708.	1.2	34
103	Defect Structure Analysis of Heterointerface between Pt and CeO _{<i>x</i>} Promoter on Pt Electro-Catalyst. ACS Applied Materials & Interfaces, 2015, 7, 2698-2707.	4.0	34
104	Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports Energy, 2021, 1, 100003.	1.7	34
105	Monodispersed Sc ₂ O ₃ precursor particles via homogeneous precipitation: Synthesis, thermal decomposition, and the effects of supporting anions on powder properties. Journal of Materials Research, 2003, 18, 1149-1156.	1.2	33
106	Silicotungstic acid/zirconia immobilized on SBA-15 for esterifications. Journal of Molecular Catalysis A, 2007, 271, 46-56.	4.8	33
107	Electrical conductivity of the systems, (Y1â^'xMx)3NbO7 (M=Ca, Mg) and Y3Nb1â^'xMxO7 (M′=Zr and Ce). Solid State Ionics, 1999, 123, 279-285.	1.3	32
108	Fabrication of Transparent Yttria Ceramics through the Synthesis of Ytttrium Hydroxide at Low Temperature and Doping by Sulfate Ions Journal of the Ceramic Society of Japan, 1999, 107, 297-299.	1.3	32

#	Article	IF	CITATIONS
109	Influence of nano-structure on electrolytic properties in CeO2 based system. Magyar Apróvad Közlemények, 2002, 70, 309-319.	1.4	31
110	Fabrication of transparent Sc ₂ O ₃ ceramics with powders thermally pyrolyzed from sulfate. Journal of Materials Research, 2003, 18, 1816-1822.	1.2	31
111	Ionic Conductivities and Microstructures of Ytterbium-Doped Ceria. Journal of the Electrochemical Society, 2007, 154, B180.	1.3	31
112	Effect of nickel diffusion on the microstructure of Gd-doped ceria (GDC) electrolyte film supported by Ni–GDC cermet anode. Solid State Ionics, 2010, 181, 646-652.	1.3	31
113	Fabrication of a nano-structured Pt-loaded cerium oxide nanowire and its anode performance in the methanol electro-oxidation reaction. Journal of Materials Chemistry A, 2013, 1, 6262.	5.2	31
114	Imaging Secondaryâ€lon Mass Spectroscopy Observation of the Scavenging of Siliceous Film from 8â€mol%â€Yttriaâ€Stabilized Zirconia by the Addition of Alumina. Journal of the American Ceramic Society, 2000, 83, 1273-1275.	1.9	30
115	Mutual Diffusion Occurring at the Interface between La _{0.6} Sr _{0.4} Co _{0.8} Fe _{0.2} O ₃ Cathode and Gd-doped Ceria Electrolyte during IT-SOFC Cell Preparation. ACS Applied Materials & amp; Interfaces, 2011. 3. 2772-2778.	4.0	30
116	Wet hemical Routes Leading to Scandia Nanopowders. Journal of the American Ceramic Society, 2003, 86, 1493-1499.	1.9	29
117	Microstructural characterization of terbium-doped ceria. Materials Research Bulletin, 2007, 42, 943-949.	2.7	29
118	Diverse Self-Assembly in Soluble Oligoazaacenes: A Microscopy Study. Langmuir, 2009, 25, 8408-8413.	1.6	29
119	Cerium-Reduction-Induced Defects Clustering, Ordering, and Associated Microstructure Evolution in Yttrium-Doped Ceria. Journal of Physical Chemistry C, 2012, 116, 5435-5443.	1.5	29
120	Optimization of ionic conductivity in solid electrolytes through dopant-dependent defect cluster analysis. Physical Chemistry Chemical Physics, 2012, 14, 8369.	1.3	29
121	Title is missing!. Journal of Materials Synthesis and Processing, 1998, 6, 175-179.	0.3	28
122	Lysozyme Adsorption onto Mesoporous Materials: Effect of Pore Geometry and Stability of Adsorbents. Journal of Nanoscience and Nanotechnology, 2007, 7, 828-832.	0.9	28
123	Halogen-free acylation of toluene over FeSBA-1 molecular sieves. Microporous and Mesoporous Materials, 2007, 100, 87-94.	2.2	28
124	Grain boundary's conductivity in heavily yttrium doped ceria. Solid State Ionics, 2012, 222-223, 31-37.	1.3	28
125	Order-Disorder Transition of BaM ₂ O ₄ Bodies (M: La, Nd, Sm, Gd, Ho or Y) Synthesized by Sintering of BaCO ₃ -M ₂ O ₃ Mixtures. Journal of the Ceramic Society of Japan, 1994, 102, 583-586.	1.3	27
126	Sc ₂ O ₃ Nanopowders via Hydroxyl Precipitation: Effects of Sulfate Ions on Powder Properties. Journal of the American Ceramic Society, 2004, 87, 1008-1013.	1.9	27

#	Article	IF	CITATIONS
127	Designing Lower Critical Solution Temperature Behavior into a Discotic Small Molecule. Journal of Physical Chemistry Letters, 2010, 1, 1336-1340.	2.1	27
128	New hollandite catalysts for the selective reduction of nitrogen monoxide with propene. Applied Catalysis A: General, 1995, 129, L1-L7.	2.2	26
129	Reactive Ce0.8RE0.2O1.9 (RE = La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) Powders via Carbonate Coprecipitation. 2. Sintering. Chemistry of Materials, 2001, 13, 2921-2927.	3.2	26
130	Novel Hexagonally Ordered Nitrogen-doped Mesoporous Carbon from SBA-15/Polyaniline Nanocomposite. Chemistry Letters, 2007, 36, 770-771.	0.7	26
131	Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous and Mesoporous Materials, 2009, 121, 18-25.	2.2	26
132	Catalytic property of the hollandite-type 1-D ion-conductors: Selective reduction of NOx. Solid State Ionics, 1995, 79, 376-381.	1.3	25
133	Crystal Phase and Sinterability of Wet-Chemically Derived YAG Powders Journal of the Ceramic Society of Japan, 2000, 108, 439-444.	1.3	25
134	Reactive yttrium aluminate garnet powder via coprecipitation using ammonium hydrogen carbonate as the precipitant. Journal of Materials Research, 2000, 15, 1864-1867.	1.2	25
135	Preparation and anode property of Pt-CeO2 electrodes supported on carbon black for direct methanol fuel cell applications. Journal of Materials Research, 2006, 21, 2314-2322.	1.2	25
136	Structural phase transformation through defect cluster growth in Gd-doped ceria. Physical Review B, 2011, 84, .	1.1	25
137	Defect clustering and local ordering in rare earth co-doped ceria. Physical Chemistry Chemical Physics, 2011, 13, 9554.	1.3	25
138	Mutual Diffusion and Microstructure Evolution at the Electrolyteâ	1.5	25
139	Dislocation Associated Incubational Domain Formation in Lightly Gadolinium-Doped Ceria. Microscopy and Microanalysis, 2011, 17, 49-53.	0.2	25
140	Characterization of yttrium aluminate garnet precursors synthesized via precipitation using ammonium bicarbonate as the precipitant. Journal of Materials Research, 2000, 15, 2375-2386.	1.2	24
141	Microstructural Characteristics of SDC Electrolyte Film Supported by Ni–SDC Cermet Anode. Journal of the Electrochemical Society, 2009, 156, B825.	1.3	24
142	Preparation of LSGM powders for low temperature sintering. Solid State Ionics, 2009, 180, 788-791.	1.3	24
143	Effect of Grain Growth on Densification and Conductivity of Caâ€Doped CeO ₂ Electrolyte. Journal of the American Ceramic Society, 2009, 92, 2745-2750.	1.9	23
144	Alkylation of naphthalene using propylene over mesoporous Al-MCM-48 catalysts. Catalysis Communications, 2007, 8, 1681-1683.	1.6	22

#	Article	IF	CITATIONS
145	Antioxidant-substituted tetrapyrazinoporphyrazine as a fluorescent sensor for basic anions. Chemical Communications, 2012, 48, 3951.	2.2	22
146	Reduction of thermal conductivity in dually doped ZnO by design of three-dimensional stacking faults. RSC Advances, 2014, 4, 2661-2672.	1.7	21
147	Mechanical Properties of High Purity Sintered ZrSiO ₄ . Journal of the Ceramic Society of Japan, 1990, 98, 1017-1022.	1.3	20
148	Preparation and Conductivity of Ba ₂ In ₂ O ₅ Ceramics. Journal of the Ceramic Society of Japan, 1994, 102, 1159-1162.	1.3	20
149	Effects of dopant concentration and calcination temperature on the microstructure of Ca-doped ceria nanopowders. Journal of the European Ceramic Society, 2008, 28, 2709-2716.	2.8	20
150	Influence of Metal Ions on the Order-Disorder Transition Temperature of the Ba-M-O (M: La, Y, In, or) Tj ETQqO O) rgBT /Ove	erlock 10 Tf
151	Photoluminescence properties of trace amounts of Pr and Tb in yttria-stabilized zirconia. Solid State Communications, 2004, 129, 421-424.	0.9	19
152	Photoemission study of the tin doped cerium oxide thin films prepared by RF magnetron sputtering. Thin Solid Films, 2010, 518, 2206-2209.	0.8	19
153	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 19, 505-510.	1.1	18
154	Microstructural Inhomogeneity in Holmium-Doped Ceria and Its Influence on the Ionic Conduction. Journal of the Electrochemical Society, 2007, 154, B616.	1.3	18
155	Breaking aggregation in a tetrathiafulvalene-fused zinc porphyrin by metal–ligand coordination to form a donor–acceptor hybrid for ultrafast charge separation and charge stabilization. Dalton Transactions, 2015, 44, 359-367.	1.6	18
156	Effect of Carbon Supports on Enhancing Mass Kinetic Current Density of Feâ€N/C Electrocatalysts. Chemistry - A European Journal, 2017, 23, 14597-14603.	1.7	18
157	Photoluminescence of Pt-loaded TiO2 powder. Physica B: Condensed Matter, 2006, 376-377, 820-822.	1.3	17
158	Local structures around Y and Ce cations in 10Âmol% Y2O3 doped ceria ceramics by EXAFS spectroscopy. Solid State Ionics, 2006, 177, 1681-1685.	1.3	17
159	Carboxyl Group Functionalization of Mesoporous Carbon Nanocage through Reaction with Ammonium Persulfate. Journal of Nanoscience and Nanotechnology, 2007, 7, 3250-3256.	0.9	16
160	Development of high quality Pt–CeO ₂ electrodes supported on carbon black for direct methanol fuel cell applications. Advances in Applied Ceramics, 2008, 107, 57-63.	0.6	16
161	Nanodomain formation and distribution in Gd-doped ceria. Materials Research Bulletin, 2012, 47, 763-767.	2.7	16
162	Preparation of an Alkali-Element-Doped CeO2 -Sm2 O3 System and Its Operation Properties as the Electrolyte in Planar Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 1996, 79, 3309-3312.	1.9	15

#	Article	IF	CITATIONS
163	Title is missing!. Journal of Materials Synthesis and Processing, 1998, 6, 329-333.	0.3	15
164	New organic–inorganic crystalline electrolytes synthesized from 12-phosphotungstic acid and the ionic liquid [BMIM][TFSI]. Electrochimica Acta, 2008, 53, 7638-7643.	2.6	15
165	Physico-Chemical Properties of Highly Flexible Temperature Tolerant Anhydrous Nafion-1,2,3-Triazole Blend Membranes. Journal of the Electrochemical Society, 2010, 157, B1872.	1.3	15
166	Tautomerism in Reduced Pyrazinacenes. Journal of Chemical Theory and Computation, 2010, 6, 517-525.	2.3	15
167	Diffusion and segregation along grain boundary at the electrolyte–anode interface in IT-SOFC. Solid State Ionics, 2011, 191, 55-60.	1.3	15
168	HAXPES study of CeO thin film–silicon oxide interface. Applied Surface Science, 2014, 303, 46-53.	3.1	15
169	Relationship between lattice mismatch and ionic conduction of grain boundary in YSZ. Progress in Natural Science: Materials International, 2014, 24, 83-86.	1.8	15
170	The influence of alumina addition and its distribution upon grain-boundary conduction in 15 mol.% calcia-stabilized zirconia. Ceramics International, 2001, 27, 269-276.	2.3	14
171	Impedance spectroscopic estimation of inter-granular phase distribution in 15 mol% calcia-stabilized zirconia/alumina composites. Journal of the European Ceramic Society, 2001, 21, 13-17.	2.8	14
172	Preparation of hollandite-type KxGaxSn8â^'xO16 thin film and NO adsorption behavior. Solid State Ionics, 2002, 152-153, 769-775.	1.3	14
173	Two-dimensional 11B–11B exchange NMR study in mesoporous boron carbon nitride at 21.8T. Solid State Nuclear Magnetic Resonance, 2007, 31, 193-196.	1.5	14
174	Fabrication and morphological control of three-dimensional cage type mesoporous titanosilicate with extremely high Ti content. Microporous and Mesoporous Materials, 2008, 110, 422-430.	2.2	14
175	Pt and Sn Doped Sputtered CeO ₂ Electrodes for Fuel Cell Applications. Fuel Cells, 2010, 10, 139-144.	1.5	14
176	Microstructural and Chemical Characterization of Ordered Structure in Yttrium Doped Ceria. Microscopy and Microanalysis, 2013, 19, 102-110.	0.2	14
177	Future prospects for the design of â€~state-of-the-art' solid oxide fuel cells. JPhys Energy, 2020, 2, 031001.	2.3	14
178	Low temperature heat capacities of zirconia and yttria-doped zirconia (ZrO2)1â^'x(Y2O3)x (x = 0, 0.0200,) Tj ETG	2q0.0 0 rg	BT ₁ 0verlock

179	Synthesis, characterization and sinterablity of 10mol% Sm2O3-doped CeO2 nanopowders via carbonate precipitation. Journal of the European Ceramic Society, 2006, 26, 417-422.	2.8	13
180	Comparison between Y-doped ceria and Ho-doped ceria: Electrical conduction and microstructures. Renewable Energy, 2008, 33, 197-200.	4.3	13

#	Article	IF	CITATIONS
181	Microstructural Evolution in a CeO ₂ -Gd ₂ O ₃ System. Microscopy and Microanalysis, 2012, 18, 162-170.	0.2	13
182	Structures of Defect Clusters on Ceria {111} Surface. Journal of Physical Chemistry C, 2012, 116, 25777-25782.	1.5	13
183	Synthesis of hollandite-type KxGaxSn8â^'xO16 fine particles by the sol-gel method. Journal of Materials Research, 1998, 13, 926-929.	1.2	12
184	Photocatalytic Reduction of NO with C2H6 on a Hollandite-Type Catalyst. Journal of Sol-Gel Science and Technology, 2000, 19, 775-778.	1.1	12
185	Low-temperature preparation of dense 10 mol%-Y ₂ O ₃ -doped CeO ₂ ceramics using powders synthesized via carbonate coprecipitation. Journal of Materials Research, 2003, 18, 1239-1246.	1.2	12
186	Proton exchange membrane with chemically tolerant organically modified zirconia. Journal of Membrane Science, 2006, 281, 735-740.	4.1	12
187	Three-dimensional Mesoporous TiKIT-6 with <i>la</i> 3 <i>d</i> Symmetry Synthesized at Low Acid Concentration and Its Catalytic Performances. Chemistry Letters, 2008, 37, 1016-1017.	0.7	12
188	Microstructures and mechanical properties of Ce1â^'xCaxO2â^'y (x=0.05, 0.1, 0.2) with different sintering temperatures. Journal of the European Ceramic Society, 2010, 30, 669-675.	2.8	12
189	Physico-chemical properties of temperature tolerant anhydrous nafion-benzimidazole blend membrane. Solid State Ionics, 2010, 181, 1098-1102.	1.3	12
190	Pyrazinacenes exhibit on-surface oxidation-state-dependent conformational and self-assembly behaviours. Communications Chemistry, 2021, 4, .	2.0	12
191	Influence of Pt and CeO2 interaction in Pt-CeO2 electrode on anode and cathode performance for fuel cell applications. Transactions of the Materials Research Society of Japan, 2008, 33, 1101-1104.	0.2	12
192	Microstructural characterization of Ce1â^'xTbxO2â^'δ (0.60≤â‰0.90) sintered samples. Materials Research Bulletin, 2008, 43, 759-764.	2.7	11
193	Small-Angle X-Ray Scattering and Proton Conductivity of Anhydrous Nafion–Benzimidazole Blend Membranes. Journal of the Electrochemical Society, 2009, 156, B729.	1.3	11
194	Superstructure formation and variation in Ni–GDC cermet anodes in SOFC. Physical Chemistry Chemical Physics, 2011, 13, 9685.	1.3	11
195	Fluorescent mesomorphic pyrazinacenes. Journal of Materials Chemistry C, 2016, 4, 11514-11523.	2.7	11
196	Preparation and Thermal Expansion Behavior of Pollucite Powders by Sol-Gel Processing. Journal of the Ceramic Society of Japan, 1991, 99, 686-691.	1.3	10
197	Low temperature heat capacity of powder and sintered samples of yttria-doped zirconia. Solid State Ionics, 1996, 86-88, 89-92.	1.3	10
198	Scavenging of Siliceous Grain-Boundary Phase of 8-mol%-Ytterbia-Stabilized Zirconia without Additive. Journal of the American Ceramic Society, 2001, 84, 2734-2736.	1.9	10

#	Article	IF	CITATIONS
199	Precursor Scavenging of Resistive Grain-Boundary Phase in 8 mol % Ytterbia-Stabilized Zirconia. Journal of the Electrochemical Society, 2002, 149, J35.	1.3	10
200	Photoluminescence properties of yttria-stabilized zirconia single crystal. Journal of Materials Research, 2004, 19, 2457-2461.	1.2	10
201	Compositional dependence of electrical conductivity of Ce1â^'xTbxO2â^'δ (0⩽x⩽1). Renewable Energy, 20 33, 331-335.	008, 4.3	10
202	Study of the character of gold nanoparticles deposited onto sputtered cerium oxide layers by deposition-precipitation method: Influence of the preparation parameters. Vacuum, 2015, 114, 86-92.	1.6	10
203	Influence of Oxygen Ion Conduction on Nitric Oxide Decomposition. Journal of the American Ceramic Society, 1994, 77, 2771-2772.	1.9	9
204	KGa-priderite and related compound for the selective reduction of nitrogen monoxide with propylene. Journal of Materials Science, 1996, 31, 1469-1473.	1.7	9
205	Precursor scavenging of the resistive grain-boundary phase in 8 mol% yttria-stabilized zirconia: Effect of trace concentrations of SiO2. Journal of Materials Research, 2001, 16, 2377-2383.	1.2	9
206	Preparation and characterization of highly ordered mesoporous SiC nanoparticles with rod shaped morphology and tunable pore diameters. Journal of Materials Chemistry, 2011, 21, 8792.	6.7	9
207	Tautomers of extended reduced pyrazinacenes: a density-functional-theory based study. Physical Chemistry Chemical Physics, 2011, 13, 2145-2150.	1.3	9
208	The diffusions and associated interfacial layer formation between thin film electrolyte and cermet anode in IT-SOFC. Journal of Alloys and Compounds, 2011, 509, 9679-9684.	2.8	9
209	Microanalysis of a Grain Boundary's Blocking Effect in Lanthanum Silicate Electrolyte for Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 5307-5313.	4.0	9
210	Facile Synthesis of Crystalline Nanoporous GaN Templated by Nitrogen Enriched Mesoporous Carbon Nitride for Friedel rafts Reaction. ChemistrySelect, 2016, 1, 6062-6068.	0.7	9
211	Influence of Various Atmospheres on the Corrosion Resistance of Si ₃ N ₄ Sintered Bodies against Steel Making Slag and Its Main Components. Journal of the Ceramic Society of Japan, 1990, 98, 348-354.	1.3	8
212	Preparation and Thermal Expansion Behavior of Excess SiO ₂ Pollucite Powders. Journal of the Ceramic Society of Japan, 1992, 100, 91-93.	1.3	8
213	Adsorption Behavior of Nitrogen Monoxide on KxGaxSn8â^'xO16 Hollandite. Journal of Sol-Gel Science and Technology, 2000, 19, 377-381.	1.1	8
214	Improving the ionic conductivity of yttria-stabilised zirconia electrolyte materials. Solid State Ionics, 2002, 154-155, 529-533.	1.3	8
215	Solution-Based Processing of Sc2O3 Nanopowders Yielding Transparent Ceramics. Journal of Materials Research, 2004, 19, 733-736.	1.2	8
216	Anhydrous proton conductivity of a lamella-structured inorganic–organic zirconium–monododecyl phosphate crystalline hybrid. Journal of Power Sources, 2007, 172, 694-697.	4.0	8

#	Article	IF	CITATIONS
217	Ionogel electrolytes at medium temperatures by composite of ionic liquids with proton conducting cesium hydrogen sulfate. Solid State Ionics, 2008, 179, 1178-1181.	1.3	8
218	Spin-coating derived LSM-SDC films with uniform pore structure. Thin Solid Films, 2008, 516, 5206-5209.	0.8	8
219	Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs. Journal of Solid State Chemistry, 2011, 184, 2458-2461.	1.4	8
220	Grain Boundary Conductivity of the System Y ₂ O ₃ -Nb ₂ O ₅ Composites. Journal of the Ceramic Society of Japan, 1992, 100, 960-964.	1.3	7
221	Low temperature heat capacity of (ZrO2)1 â ^{~?} x(Y2O3)x (x = 0.0776 and 0.0970) and low energy excitations. Solid State Ionics, 1995, 79, 143-146.	1.3	7
222	Improvement of the electrolytic properties of Y2O3-based materials using a crystallographic index. Solid State Ionics, 2001, 138, 277-291.	1.3	7
223	Low Temperature Heat Capacity and Thermodynamic Functions of Ceria-Stabilized Zirconia Ce0.124Zr0.876O2. Journal of Chemical & Engineering Data, 2003, 48, 1479-1482.	1.0	7
224	Novel Microporous Carbon Material with Flower Like Structure Templated by MCM-22. Journal of Nanoscience and Nanotechnology, 2007, 7, 2913-2916.	0.9	7
225	Synthesis of Fructone and Acylal Using Hexagonally Ordered Mesoporous Aluminosilicate Catalyst. Collection of Czechoslovak Chemical Communications, 2008, 73, 1112-1124.	1.0	7
226	The Influence of Alumina Distributions upon Scavenging Highly Resistive Grain-boundary Phase of 8 mol % Yttria-stabilized Zirconia. Electrochemistry, 2000, 68, 427-432.	0.6	7
227	Relationship between Photoluminescence Intensity of TiO2Suspension Containing Ethanol and Its Surface Coverage on TiO2Surface. Japanese Journal of Applied Physics, 2004, 43, 3609-3610.	0.8	6
228	SrTiO3Thin Films with Visible-Light Band Gap Fabricated by Nitrogen Reactive Sputtering. Japanese Journal of Applied Physics, 2007, 46, L468-L470.	0.8	6
229	Synthesis and Microstructural Characterization of Ce _{1â^`<l>x</l>} Tb _{<l>x</l>} O _{2â^`<l>δ</l>} (0 ≤l>x ≤) Nano-Powders. Journal of Nanoscience and Nanotechnology, 2007, 7, 2521-2525.	0.9	6
230	Microstructural and chemical aspects of working-temperature aged Ca-doped CeO2. Journal of the European Ceramic Society, 2010, 30, 2505-2513.	2.8	6
231	Design of Active Sites on Nickel in the Anode of Intermediateâ€Temperature Solid Oxide Fuel Cells using Trace Amount of Platinum Oxides. ChemPlusChem, 2018, 83, 756-768.	1.3	6
232	Surface layer of Ptâ€Oâ€Ce bonds on CeO x nanowire with high ORR activity converted by proton beam irradiation. Journal of the American Ceramic Society, 2021, 104, 1945-1952.	1.9	6
233	Electrical Conductivity of Oxygen-Deficient Perovskite Solid-Solution System (Ba, La) (In, Ga) O _{3â^`Î} . Electrochemistry, 1999, 67, 765-768.	0.6	6
234	Factors Affecting the Formation Rate of ZrN by the Carbothermal Nitridation Method. Journal of the Ceramic Society of Japan, 1998, 106, 650-653.	1.3	5

#	Article	IF	CITATIONS
235	Novel Highly Acidic Nanoporous Cage Type Materials and Their Catalysis. Topics in Catalysis, 2009, 52, 111-118.	1.3	5
236	Morphological Control of Porous SiC Templated by As-Synthesized Form of Mesoporous Silica. Journal of Nanoscience and Nanotechnology, 2011, 11, 6823-6829.	0.9	5
237	Low-Temperature Synthesis of Pyrano- and Furo[3,2-c]quinolines via Povarov Reaction Using a Highly Ordered 3D Nanoporous Catalyst with a High Acidity. Synlett, 2012, 23, 2237-2240.	1.0	5
238	Preparation and performance of intermediate-temperature fuel cells based on Gd-doped ceria electrolytes with different compositions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1538-1541.	1.7	5
239	Phenanthrolineâ€Fused Pyrazinacenes: Oneâ€Pot Synthesis, Tautomerization and a Ru II (2,2′â€bpy) 2 Derivative. European Journal of Inorganic Chemistry, 2018, 2018, 2541-2548.	1.0	5
240	Reactivity of High-Purity ZrSiO ₄ Sintered Bodies for Alkaline Glass Melts. Journal of the Ceramic Society of Japan, 1992, 100, 250-258.	1.3	4
241	Microstructure evolution of yttria-doped ceria in reducing atmosphere. Renewable Energy, 2013, 50, 494-497.	4.3	4
242	An Assessment of Interatomic Potentials for Yittria-Stablized Zirconia. Applied Mechanics and Materials, 0, 492, 239-247.	0.2	4
243	High electrical conductivity in Ba ₂ In ₂ O ₅ brownmillerite based materials induced by design of a Frenkel defect structure. RSC Advances, 2017, 7, 4688-4696.	1.7	4
244	Preparation of Y ₃ NbO ₇ Powders with Excess Oxygen Vacancies and Conductivity of the Sintered Bodies. Journal of the Ceramic Society of Japan, 1993, 101, 671-674.	1.3	3
245	Order-disorder Transition of Synthesized Ba ₂ In ₂ O ₅ , Ba ₃ Y ₄ O ₉ and BaNd ₂ O ₄ with a Perovskite-related Structure. Electrochemistry, 1996, 64, 683-685.	0.3	3
246	Photoinduced hydrophilicity and photocatalytic decomposition of endocrine-disrupting chemical pentachlorophenol on hollandite. Journal of Materials Research, 2003, 18, 1046-1053.	1.2	3
247	Blueshift of the photoluminescence excitation band of the Sm3+ impurity in Pt–CeO2 powder induced by the electron transfer between CeO2 and Pt particles. Chemical Physics Letters, 2005, 412, 391-394.	1.2	3
248	Synthesis and photo-catalytic property of a hollandite-type compound (K2Ga2Sn6O16). Journal of the European Ceramic Society, 2006, 26, 583-587.	2.8	3
249	Direct-current-induced transformation at the interface between platinum anode and holmium-doped ceria electrolyte. Journal of Applied Physics, 2009, 105, .	1.1	3
250	Highly Efficient Electrocatalysis of Metal-Free, Graphitic and Sustainable Nitrogen Doped Mesoporous Carbon Towards Oxygen Reduction Reaction. Advanced Porous Materials, 2017, 5, 26-35.	0.3	3
251	Study of palladium interaction with magnetron sputtered SnO2 films. E-Journal of Surface Science and Nanotechnology, 2006, 4, 497-503.	0.1	3
252	Stability of Tetragonal Zirconia in Molten Fluoride Salts. Journal of the Ceramic Association Japan, 1986, 94, 961-969.	0.2	2

#	Article	IF	CITATIONS
253	Thermal Expansion Characteristics of Li-Replaced Type Pollucite (Cs _{1-<i>x</i>} Li _{<i>x</i>} AlSi ₂ O ₆) Powder. Journal of the Ceramic Society of Japan, 1991, 99, 1274-1276.	1.3	2
254	Conductivity of Tazheranite Ceramics Synthesized by Controlling Composition. Journal of the American Ceramic Society, 1993, 76, 530-532.	1.9	2
255	Selective reduction of nitrogen oxide with propene on protonated β-alumina catalyst: Design of active site for catalytic reaction. Applied Catalysis A: General, 1995, 132, 21-27.	2.2	2
256	Photocatalytic Reductions of Nitric Oxide in gas Phase and Nitrate ion in Water with Reducing Agents on Hollandite Catalyst. Materials Research Society Symposia Proceedings, 1998, 549, 125.	0.1	2
257	Photoluminescence properties of a hollandite compound K2Ga2Sn6O16. Science and Technology of Advanced Materials, 2003, 4, 247-251.	2.8	2
258	Improvement of oxidative decomposition activity on hollandite type photocatalyst against pentachlorophenol. Science and Technology of Advanced Materials, 2005, 6, 230-235.	2.8	2
259	Correlation between Y2O3 concentration and photoluminescence excitation spectra of Tb3+ impurity in Y2O3-stabilized ZrO2. Journal of Applied Physics, 2005, 97, 023503.	1.1	2
260	Synthesis of well-ordered carboxyl group functionalized mesoporous carbon using non-toxic oxidant, (NH4)2S2O8. Studies in Surface Science and Catalysis, 2007, 165, 909-912.	1.5	2
261	One and three dimensional mesoporous carbon nitride molecular sieves with tunable pore diameters. Studies in Surface Science and Catalysis, 2007, 165, 905-908.	1.5	2
262	Minimization of Pt content in Pt-CeO ₂ composite anode. Transactions of the Materials Research Society of Japan, 2008, 33, 1097-1100.	0.2	2
263	Glassâ€Phase Movement in Yttriaâ€Stabilized Zirconia/Alumina Composites. Journal of the American Ceramic Society, 2010, 93, 1494-1500.	1.9	2
264	Incubational domain characterization in lightly doped ceria. Journal of Solid State Chemistry, 2012, 192, 28-33.	1.4	2
265	Design of Pt-CeOxhetero-interface on electrodes in polymer electrolyte membrane fuel cells. IOP Conference Series: Materials Science and Engineering, 2014, 54, 012010.	0.3	2
266	Active Pt-Nanocoated Layer with Pt–O–Ce Bonds on a CeO _{<i>x</i>} Nanowire Cathode Formed by Electron Beam Irradiation. ACS Omega, 0, , .	1.6	2
267	Corrosion Behavior of MgO-ZrO ₂ and CaO-ZrO ₂ Sintered Bodies in Molten Fluoride Salts. Journal of the Ceramic Association Japan, 1987, 95, 595-603.	0.2	1
268	Si ₃ N ₄ -ZrO ₂ Composite with Precipitated l±-Si ₃ N ₄ Whisker. Journal of the Ceramic Society of Japan, 1988, 96, 744-748.	1.3	1
269	Sintering of High Purity ZrSiO ₄ Powder. Journal of the Ceramic Society of Japan, 1991, 99, 1098-1102.	1.3	1
270	Preparation of Tazheranite Powders by Solid Phase Reaction and Conductivity of Sintered Bodies. Journal of the Ceramic Society of Japan, 1992, 100, 1135-1139.	1.3	1

#	Article	IF	CITATIONS
271	Preparation and characterization of hollandite thin film. Solid State Ionics, 2002, 151, 141-146.	1.3	1
272	Oxygen dependence of NO adsorption on Hollandite-type KxGaxSn8–x O16 thin film. Research on Chemical Intermediates, 2002, 28, 493-503.	1.3	1
273	Influence of pH on Photoadsorption of Dissolved Oxygen in TiO2Suspensions. Japanese Journal of Applied Physics, 2003, 42, 6623-6624.	0.8	1
274	Fabrication of Nano-structured Dy>inf <x>/inf<ce>inf<1-x>/inf<o>inf<2-x/2>/inf<(x=0.15 and 0.2) Electrolytes Using Combined Process of Spark Plasma Sintering and Conventional Sintering. , 0, , .</o></ce></x>		1
275	Relationship between Microstructure and Ionic Conductivity in Ytterbium Doped Ceria. , 0, , .		1
276	Design of Micro-Structure at Atom Level in Dy Doped CeO ₂ Solid Electrolytes for Fuel Cell Applications. Materials Science Forum, 2007, 539-543, 1437-1442.	0.3	1
277	Mesoporous Nitrides through Nano-Hard Templating Techniques. Solid State Phenomena, 2007, 119, 291-294.	0.3	1
278	Small-Angle X-ray Scattering and Proton Conductivity of Anhydrous Nafion-Blend Membranes for High Temperature PEFCs. ECS Transactions, 2009, 25, 405-414.	0.3	1
279	Nano-structure design of doped ceria solid electrolytes for intermediate temperature operation of solid oxide fuel cell. Transactions of the Materials Research Society of Japan, 2010, 35, 431-441.	0.2	1
280	Design of Active Site at Heterointerface between Brownmillerite Type Oxide Promoter and Fluorite Cubic ZrO ₂ in Anode of Intermediate Temperature SOFCs. ACS Applied Energy Materials, 2019, 2, 5183-5197.	2.5	1
281	Influence of nano-structural feature of M0.25Ce0.75O1.875 (M=Gd, Yb, Y) solid electrolytes on their electronic properties. Transactions of the Materials Research Society of Japan, 2007, 32, 943-946.	0.2	1
282	Anode properties of Pt-CeO2 composite electrode materials for direct methanol fuel cells application. Transactions of the Materials Research Society of Japan, 2007, 32, 967-970.	0.2	1
283	Preparation of Ultrafine Zirconium Nitride Powders from Zirconia by Reduction with Magnesium. Journal of the Ceramic Association Japan, 1985, 93, 505-510.	0.2	Ο
284	Effect of Reducing Metals on Preparation of Niobium Nitride Powder from Niobium Chloride (V). Journal of the Ceramic Association Japan, 1985, 93, 750-756.	0.2	0
285	Corrosion-Resistance for ZTA-Cr ₂ O ₃ Sintered Bodies in Molten Fluoride Salts. Journal of the Ceramic Association Japan, 1987, 95, 1023-1030.	0.2	Ο
286	Stability of tetragonal zirconia in Molten fluoride salts. International Journal of High Technology Ceramics, 1987, 3, 253.	0.2	0
287	Synthesis and Mechanical Properties of Alumina-MgO Stabilized Zirconia-Zircon Composite. Journal of the Ceramic Society of Japan, 1993, 101, 309-314.	1.3	0
288	Influence of Order-Disorder Transition of Oxygen Vacancies on the Decomposition Reaction of NO _{<i>x</i>} . Journal of the Ceramic Society of Japan, 1994, 102, 1047-1050.	1.3	0

#	Article	IF	CITATIONS
289	NO x storage properties of hollandite-type K x Ga x Sn8â^'x O16. Research on Chemical Intermediates, 2003, 29, 749-753.	1.3	0
290	Low-Temperature Synthesis of Praseodymium-Doped Ceria Nanopowders ChemInform, 2003, 34, no.	0.1	0
291	Synthesis and characterization of 10 mol% Dy 2 O 3 -doped ceria nanopowders via homogeneous precipitation. , 2004, 5648, 309.		0
292	Development of high quality Pt-CeO>inf<2>/inf <based ,="" .<="" 0,="" anode="" applications.="" cell="" direct="" for="" fuel="" materials="" methanol="" td=""><td></td><td>0</td></based>		0
293	Grain-Size Dependence of Electrolytic Properties in 25 at.% Yttrium Doped Ceria Solid Electrolytes. , 0, , .		0
294	Fabrication and Microanalysis of Nano-Structured CuO _X -CeO ₂ Catalysts for CO Oxidation Reaction. Advanced Materials Research, 2006, 15-17, 261-266.	0.3	0
295	Intermediate Temperature Proton Electrolytes for Polymer Fuel Cells. , 2007, , .		0
296	Development of high quality Pt-CeO2 composite anode for direct methanol fuel cell applications. , 2007, , .		0
297	Design of Nano-Structured Doped CeO2 Solid Electrolyte for Fuel Cell Application. ECS Meeting Abstracts, 2007, , .	0.0	0
298	Highly Efficient Friedel-Crafts Alkylation of Indoles and Pyrrole Catalyzed by Mesoporous 3D Aluminosilicate Catalyst with Electron-Deficient Olefins. Synlett, 2010, 2010, 2813-2817.	1.0	0
299	Proton Diffusion in Anhydrous Nafion-Blend Membrane for High Temperature PEFCs. ECS Transactions, 2011, 35, 107-113.	0.3	0
300	Nano-structure design of doped ceria solid electrolytes for intermediate temperature operation of solid oxide fuel cell. Transactions of the Materials Research Society of Japan, 2012, 20thAnniv, 5-15.	0.2	0
301	Important Role of Cerium Oxide in Oxygen Reduction Reaction at Pt-CeOx Nanocomposite Electrocatalyst Studied by in situ Electrochemical XAFS. ECS Meeting Abstracts, 2012, , .	0.0	0
302	Design of Active Sites on Nickel in the Anode of Intermediate-Temperature Solid Oxide Fuel Cells using Trace Amount of Platinum Oxides. ChemPlusChem, 2018, 83, 740-740.	1.3	0
303	PHASE STABILIZATION AND HEAT CAPACITY OF ZIRCONIA. , 2007, , .		0
304	Sintering behavior of M0.25Ce0.75O1.875 (M=Dy, Gd) ceramics fabricated using pulsed electric current sintering method. Transactions of the Materials Research Society of Japan, 2007, 32, 947-950.	0.2	0
305	Synthesis and Characterization of Microporous Carbon Material with High Surface Area. Transactions of the Materials Research Society of Japan, 2007, 32, 999-1001.	0.2	0
306	Conducting properties of M _{0.25} Ce _{0.75} O _{1.875} (M=Dy, Gd) sintered specimen fabricated by the combined process of pulsed electric current sintering and fast sintering. Transactions of the Materials Research Society of Japan, 2008, 33, 1085-1088.	0.2	0

0

#	Article	IF	CITATIONS
307	Organic-Inorganic Hybrid Electrolytes for High Temperature PEFCs. Transactions of the Materials Research Society of Japan, 2008, 33, 1063-1072.	0.2	0
308	Effect of Ni Diffusion on the Microstructure of Gd-Doped Ceria (GDC) Electrolyte Film Supported by Ni-GDC Cermet Anode. Transactions of the Materials Research Society of Japan, 2010, 35, 401-404.	0.2	0
309	Nano-structure Analysis of Interface in Anode Supported Gd-doped Ceria Thin Film Electrolyte. Transactions of the Materials Research Society of Japan, 2012, 37, 389-392.	0.2	0

Advanced Materials for Fuel Cells. , 2013, , 1175-1187.