
Laran T Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712310/publications.pdf Version: 2024-02-01

LADAN TIENSEN

#	Article	IF	CITATIONS
1	Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules, 2021, 26, 1207.	1.7	4
2	Novel SOX10 Mutations in Waardenburg Syndrome: Functional Characterization and Genotype-Phenotype Analysis. Frontiers in Genetics, 2020, 11, 589784.	1.1	10
3	MITF variants cause nonsyndromic sensorineural hearing loss with autosomal recessive inheritance. Scientific Reports, 2020, 10, 12712.	1.6	9
4	Disruption in iron homeostasis and impaired activity of iron-sulfur cluster containing proteins in the yeast model of Shwachman-Diamond syndrome. Cell and Bioscience, 2020, 10, 105.	2.1	1
5	Overexpression of Transcription Factor <i>ZNF1</i> of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2020, 15, e1900492.	1.8	18
6	Genetic Analysis of Peroxisomal Genes Required for Longevity in a Yeast Model of Citrin Deficiency. Diseases (Basel, Switzerland), 2020, 8, 2.	1.0	2
7	Decreased accumulation of superoxide dismutase 2 within mitochondria in the yeast model of Shwachmanâ€Điamond syndrome. Journal of Cellular Biochemistry, 2019, 120, 13867-13880.	1.2	7
8	Possible Role of the Ca2+/Mn2+ P-Type ATPase Pmr1p on Artemisinin Toxicity through an Induction of Intracellular Oxidative Stress. Molecules, 2019, 24, 1233.	1.7	2
9	Overexpression of the peroxin Pex34p suppresses impaired acetate utilization in yeast lacking the mitochondrial aspartate/glutamate carrier Agc1p. FEMS Yeast Research, 2019, 19, .	1.1	4
10	Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. Journal of Ethnopharmacology, 2018, 223, 10-21.	2.0	1
11	FungicideXylariasp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system inSaccharomyces cerevisiae. Future Microbiology, 2017, 12, 417-440.	1.0	7
12	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	2.1	244
13	Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15, .	1.1	23
14	Deletion of Mitochondrial Porin Alleviates Stress Sensitivity in the Yeast Model of Shwachman-Diamond Syndrome. Journal of Genetics and Genomics, 2015, 42, 671-684.	1.7	8
15	Improper protein trafficking contributes to artemisinin sensitivity in cells lacking the KDAC Rpd3p. FEBS Letters, 2014, 588, 4018-4025.	1.3	10
16	Manganese Transport, Trafficking and Function in Invertebrates. Issues in Toxicology, 2014, , 1-33.	0.2	10
17	Prediction of the functional effect of novel <i>SLC25A13</i> variants using a <i>S. cerevisiae</i> model of AGC2 deficiency. Journal of Inherited Metabolic Disease, 2013, 36, 821-830.	1.7	19
18	Screening of <i>SLC25A13</i> mutation in the Thai population. World Journal of Gastroenterology, 2013, 19, 7735.	1.4	14

Laran T Jensen

#	Article	IF	CITATIONS
19	The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. Journal of Biological Inorganic Chemistry, 2010, 15, 1051-1062.	1.1	50
20	A novel giant peroxisomal superoxide dismutase motif-containing protein. Free Radical Biology and Medicine, 2010, 48, 811-820.	1.3	19
21	Activation of Cu,Zn-Superoxide Dismutase in the Absence of Oxygen and the Copper Chaperone CCS. Journal of Biological Chemistry, 2009, 284, 21863-21871.	1.6	61
22	The Interaction of Mitochondrial Iron with Manganese Superoxide Dismutase. Journal of Biological Chemistry, 2009, 284, 22633-22640.	1.6	61
23	Down-Regulation of a Manganese Transporter in the Face of Metal Toxicity. Molecular Biology of the Cell, 2009, 20, 2810-2819.	0.9	46
24	The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radical Biology and Medicine, 2009, 46, 154-162.	1.3	101
25	Manganese Homeostasis in <i>Saccharomyces cerevisiae</i> . Chemical Reviews, 2009, 109, 4722-4732.	23.0	115
26	Instability of Superoxide Dismutase 1 of Drosophila in Mutants Deficient for Its Cognate Copper Chaperone. Journal of Biological Chemistry, 2008, 283, 35393-35401.	1.6	50
27	The Effects of Glutaredoxin and Copper Activation Pathways on the Disulfide and Stability of Cu,Zn Superoxide Dismutase. Journal of Biological Chemistry, 2006, 281, 28648-28656.	1.6	45
28	Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved) Tj ETQq	0 0 0 rgBT 1.7	/Overlock 10 41
29	Activation of CuZn Superoxide Dismutases from Caenorhabditis elegans Does Not Require the Copper Chaperone CCS. Journal of Biological Chemistry, 2005, 280, 41373-41379.	1.6	82
30	Manganese Activation of Superoxide Dismutase 2 in the Mitochondria of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 22715-22720.	1.6	101
31	Mutations in Saccharomyces cerevisiae Iron-Sulfur Cluster Assembly Genes and Oxidative Stress Relevant to Cu,Zn Superoxide Dismutase. Journal of Biological Chemistry, 2004, 279, 29938-29943.	1.6	28
32	The many highways for intracellular trafficking of metals. Journal of Biological Inorganic Chemistry, 2003, 8, 803-809.	1.1	104
33	The Saccharomyces cerevisiae High Affinity Phosphate Transporter Encoded by PHO84 Also Functions in Manganese Homeostasis. Journal of Biological Chemistry, 2003, 278, 42036-42040.	1.6	159
34	Characterization of human soluble high and low activity catechol-O-methyltransferase catalyzed catechol estrogen methylation. Pharmacogenetics and Genomics, 2002, 12, 517-528.	5.7	58
35	The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochemical Journal, 2002, 362, 119.	1.7	46
36	The distinct methods by which manganese and iron regulate the Nramp transporters in yeast. Biochemical Journal, 2002, 362, 119-124.	1.7	55

LARAN T JENSEN

#	Article	IF	CITATIONS
37	Engineering of Metallothionein-3 Neuroinhibitory Activity into the Inactive Isoform Metallothionein-1. Journal of Biological Chemistry, 2002, 277, 37023-37028.	1.6	62
38	Regulation of Saccharomyces cerevisiae FET4 by Oxygen and Iron. Journal of Molecular Biology, 2002, 318, 251-260.	2.0	60
39	A Fraction of Yeast Cu,Zn-Superoxide Dismutase and Its Metallochaperone, CCS, Localize to the Intermembrane Space of Mitochondria. Journal of Biological Chemistry, 2001, 276, 38084-38089.	1.6	592
40	A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator. EMBO Journal, 2000, 19, 3704-3713.	3.5	75
41	Role of Saccharomyces cerevisiae ISA1 and ISA2 in Iron Homeostasis. Molecular and Cellular Biology, 2000, 20, 3918-3927.	1.1	170
42	Effect of the Two Conserved Prolines of Human Growth Inhibitory Factor (Metallothionein-3) on Its Biological Activity and Structure Fluctuation:  Comparison with a Mutant Protein. Biochemistry, 2000, 39, 14567-14575.	1.2	119
43	The Yeast Transcription Factor Mac1 Binds to DNA in a Modular Fashion. Journal of Biological Chemistry, 1999, 274, 26962-26967.	1.6	42
44	The growth inhibitory activity of metallothionein-3 correlates with its novel \hat{I}^2 domain sequence rather than metal binding properties. , 1999, , 51-54.		0
45	Identification of a four copper folding intermediate in mammalian copper metallothionein by electrospray ionization mass spectrometry. Journal of Biological Inorganic Chemistry, 1998, 3, 627-631.	1.1	33
46	Metal-ion regulation of gene expression in yeast. Current Opinion in Chemical Biology, 1998, 2, 216-221.	2.8	53
47	Identification of a copper-induced intramolecular interaction in the transcription factor Mac1 from Saccharomyces cerevisiae. EMBO Journal, 1998, 17, 5400-5408.	3.5	96
48	Mapping of the DNA Binding Domain of the Copper-responsive Transcription Factor Mac1 from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 23805-23811.	1.6	50
49	Metalloregulation of FRE1 and FRE2Homologs in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 23716-23721.	1.6	174
50	Sensors that mediate copper-specific activation and repression of gene expression. Journal of Biological Inorganic Chemistry, 1997, 2, 2-10.	1.1	13
51	Enhanced Effectiveness of Copper Ion Buffering by CUP1 Metallothionein Compared with CRS5 Metallothionein in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1996, 271, 18514-18519.	1.6	95
52	Bioactivity of Metallothionein-3 Correlates with Its Novel .beta. Domain Sequence Rather Than Metal Binding Properties. Biochemistry, 1995, 34, 4740-4747.	1.2	173
53	Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Research, 1994, 649, 297-304.	1.1	182