Michele Zagnoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modular microfluidic platform to enable complex and customisable in vitro models for neuroscience. Lab on A Chip, 2022, , .	6.0	7
2	Assessment of CAR-T Cell-Mediated Cytotoxicity in 3D Microfluidic Cancer Co-Culture Models for Combination Therapy. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 86-95.	2.3	8
3	Cancer-associated fibroblasts require proline synthesis by PYCR1 for the deposition of pro-tumorigenic extracellular matrix. Nature Metabolism, 2022, 4, 693-710.	11.9	49
4	Microdroplet Operations in Polymeric Microtubes. Analytical Chemistry, 2021, 93, 2411-2418.	6.5	4
5	Microfluidic technologies for immunotherapy studies on solid tumours. Lab on A Chip, 2021, 21, 2306-2329.	6.0	19
6	Advances in microfluidic <i>in vitro</i> systems for neurological disease modeling. Journal of Neuroscience Research, 2021, 99, 1276-1307.	2.9	56
7	Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Analytical Chemistry, 2021, 93, 5862-5871.	6.5	25
8	Dynamic early clusters of nodal proteins contribute to node of Ranvier assembly during myelination of peripheral neurons. ELife, 2021, 10, .	6.0	6
9	Ultra-low flow rate measurement techniques. Measurement: Sensors, 2021, 18, 100279.	1.7	6
10	Functionalisation of human chloride intracellular ion channels in microfluidic droplet-interface-bilayers. Biosensors and Bioelectronics, 2020, 150, 111920.	10.1	6
11	Quantitative propagation of assembled human Tau from Alzheimer's disease brain in microfluidic neuronal cultures. Journal of Biological Chemistry, 2020, 295, 13079-13093.	3.4	22
12	Seeing around corners: Cells solve mazes and respond at a distance using attractant breakdown. Science, 2020, 369, .	12.6	99
13	Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathologica, 2020, 140, 143-167.	7.7	48
14	The Role of the BMP Pathway in Sustaining CML Stem Cells in the Bone Marrow Niche. Blood, 2019, 134, 3732-3732.	1.4	0
15	Toll-like receptor 3 activation impairs excitability and synaptic activity via TRIF signalling in immature rat and human neurons. Neuropharmacology, 2018, 135, 1-10.	4.1	17
16	Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Scientific Reports, 2018, 8, 14672.	3.3	93
17	Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis. Analytical Chemistry, 2018, 90, 12004-12010.	6.5	47
18	A Microfluidic Platform for the Characterisation of CNS Active Compounds. Scientific Reports, 2017, 7. 15692.	3.3	14

Michele Zagnoni

#	Article	IF	CITATIONS
19	Transitioning from multi-phase to single-phase microfluidics for long-term culture and treatment of multicellular spheroids. Lab on A Chip, 2016, 16, 3548-3557.	6.0	33
20	Real-time assessment of nanoparticle-mediated antigen delivery and cell response. Lab on A Chip, 2016, 16, 3374-3381.	6.0	17
21	Neuronal networks provide rapid neuroprotection against spreading toxicity. Scientific Reports, 2016, 6, 33746.	3.3	40
22	Emulsion technologies for multicellular tumour spheroid radiation assays. Analyst, The, 2016, 141, 100-110.	3.5	62
23	Developmental regulation of tau splicing is disrupted in stem cell-derived neurons from frontotemporal dementia patients with the 10 + 16 splice-site mutation in MAPT. Human Molecular Genetics, 2015, 24, 5260-5269.	2.9	116
24	Droplet-interface-bilayer assays in microfluidic passive networks. Scientific Reports, 2015, 5, 9951.	3.3	50
25	Self-Assembly: Biocatalytic Self-Assembly of Nanostructured Peptide Microparticles using Droplet Microfluidics (Small 2/2014). Small, 2014, 10, 284-284.	10.0	1
26	Theoretical and experimental analysis of side-polished fiber optofluidic variable attenuator. , 2014, , .		0
27	Biocatalytic Selfâ€Assembly of Nanostructured Peptide Microparticles using Droplet Microfluidics. Small, 2014, 10, 285-293.	10.0	41
28	In-line single-mode fiber variable optical attenuator based on electrically addressable microdroplets. Applied Physics Letters, 2014, 105, 021105.	3.3	2
29	Chemically induced synaptic activity between mixed primary hippocampal co-cultures in a microfluidic system. Integrative Biology (United Kingdom), 2014, 6, 636-644.	1.3	36
30	Universal Surface-Enhanced Raman Tags: Individual Nanorods for Measurements from the Visible to the Infrared (514–1064 nm). ACS Nano, 2014, 8, 8600-8609.	14.6	44
31	Side-polished fiber optofluidic attenuator based on electrowetting-on-dielectric actuation. , 2013, , .		1
32	Miniaturised technologies for the development of artificial lipid bilayer systems. Lab on A Chip, 2012, 12, 1026.	6.0	152
33	Single-Cell Analysis in Microdroplets. , 2012, , 211-228.		1
34	Intracellular Protein Determination Using Droplet-Based Immunoassays. Analytical Chemistry, 2011, 83, 5361-5368.	6.5	52
35	Droplet Microfluidics for High-throughput Analysis of Cells and Particles. Methods in Cell Biology, 2011, 102, 23-48.	1.1	13
36	Rücktitelbild: Modular Redox-Active Inorganic Chemical Cells: iCHELLs (Angew. Chem. 44/2011). Angewandte Chemie, 2011, 123, 10646-10646.	2.0	0

Michele Zagnoni

#	Article	IF	CITATIONS
37	Back Cover: Modular Redox-Active Inorganic Chemical Cells: iCHELLs (Angew. Chem. Int. Ed. 44/2011). Angewandte Chemie - International Edition, 2011, 50, 10462-10462.	13.8	0
38	Design and characterization of polymeric pressure sensors for wireless wind sail monitoring. Sensors and Actuators A: Physical, 2011, 167, 162-170.	4.1	9
39	A PCB-embedded pressure sensor for wireless wind sail monitoring. Procedia Engineering, 2010, 5, 315-318.	1.2	3
40	Hysteresis in Multiphase Microfluidics at a T-Junction. Langmuir, 2010, 26, 9416-9422.	3.5	31
41	Electrocoalescence Mechanisms of Microdroplets Using Localized Electric Fields in Microfluidic Channels. Langmuir, 2010, 26, 14443-14449.	3.5	66
42	A microdroplet-based shift register. Lab on A Chip, 2010, 10, 3069.	6.0	58
43	Electrically initiated upstream coalescence cascade of droplets in a microfluidic flow. Physical Review E, 2009, 80, 046303.	2.1	51
44	Microfluidic array platform for simultaneous lipid bilayer membrane formation. Biosensors and Bioelectronics, 2009, 24, 1235-1240.	10.1	58
45	Bilayer lipid membranes from falling droplets. Analytical and Bioanalytical Chemistry, 2009, 393, 1601-1605.	3.7	25
46	Microfluidic Single-Cell Array Cytometry for the Analysis of Tumor Apoptosis. Analytical Chemistry, 2009, 81, 5517-5523.	6.5	197
47	On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab on A Chip, 2009, 9, 2652.	6.0	107
48	Binding of Anionic Lipids to at Least Three Nonannular Sites on the Potassium Channel KcsA is Required for Channel Opening. Biophysical Journal, 2008, 94, 1689-1698.	0.5	121
49	Formation of artificial lipid bilayers using droplet dielectrophoresis. Lab on A Chip, 2008, 8, 1617.	6.0	77
50	Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system. Journal of Micromechanics and Microengineering, 2007, 17, S189-S196.	2.6	29
51	Controlled delivery of proteins into bilayer lipid membranes on chip. Lab on A Chip, 2007, 7, 1176.	6.0	64
52	Air-Exposure Technique for the Formation of Artificial Lipid Bilayers in Microsystems. Langmuir, 2007, 23, 8277-8284.	3.5	50
53	Controlled delivery of membrane proteins to artificial lipid bilayers by nystatin–ergosterol modulated vesicle fusion. IET Nanobiotechnology, 2006, 153, 21.	2.1	21
54	Applicability of Field Programmable Analog Arrays to Capacitive Sensing in the Sub-pF Range. Analog Integrated Circuits and Signal Processing, 2006, 47, 39-51.	1.4	6

#	Article	IF	CITATIONS
55	A non-invasive capacitive sensor strip for aerodynamic pressure measurement. Sensors and Actuators A: Physical, 2005, 123-124, 240-248.	4.1	40
56	Aircraft angle of attack and air speed detection by redundant strip pressure sensors. , 0, , .		14
57	Acquisition system for pressure sensor network. , 0, , .		7