Sjoerd C Veenstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantifying the performance gain of 100 cm ² bifacial four terminal perovskite-Si tandem modules. EPJ Photovoltaics, 2022, 13, 11.	0.8	1
2	Scalable Pulsed Laser Deposition of Transparent Rear Electrode for Perovskite Solar Cells. Advanced Materials Technologies, 2021, 6, 2000856.	3.0	28
3	Additive effect of bromides and chlorides on the performance of perovskite solar cells fabricated via sequential deposition. Journal of Power Sources, 2021, 513, 230528.	4.0	4
4	Role of surface recombination in perovskite solar cells at the interface of HTL/CH3NH3PbI3. Nano Energy, 2020, 67, 104186.	8.2	84
5	The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	10
6	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
7	Impact of P3HT materials properties and layer architecture on OPV device stability. Solar Energy Materials and Solar Cells, 2019, 202, 110151.	3.0	17
8	Towards Large Area Stable Perovskite Solar Cells and Modules. , 2019, , .		3
9	Compact multifunctional source-meter system for characterisation of laboratory-scale solar cell devices. Measurement Science and Technology, 2019, 30, 035901.	1.4	2
10	Highly Efficient and Stable Flexible Perovskite Solar Cells with Metal Oxides Nanoparticle Charge Extraction Layers. Small, 2018, 14, e1702775.	5.2	111
11	Surface Fluorination of ALD TiO ₂ Electron Transport LayerÂfor Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701456.	1.9	27
12	Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018, 181, 53-59.	3.0	196
13	Atmospheric Pressure Spatial ALD Layer for Ambient, Thermally and Light Stable p-i-n Planar Perovskite Solar Cells. , 2018, , .		1
14	Highly near-infrared-transparent perovskite solar cells and their application in high-efficiency 4-terminal perovskite/c-Si tandems. , 2018, , .		0
15	Large area >140 cm ² perovskite solar modules made by sheet to sheet and roll to roll fabrication with 14.5% efficiency. , 2018, , .		13
16	High efficiency 4-terminal perovskite/c-Si tandem cells. Solar Energy Materials and Solar Cells, 2018, 188, 1-5.	3.0	43
17	Stability of organic solar cells with PCDTBT donor polymer: An interlaboratory study. Journal of Materials Research, 2018, 33, 1909-1924.	1.2	17
18	Highly Efficient and Stable Semiâ€Transparent pâ€iâ€n Planar Perovskite Solar Cells by Atmospheric Pressure Spatial Atomic Layer Deposited ZnO. Solar Rrl, 2018, 2, 1800147.	3.1	31

SJOERD C VEENSTRA

#	Article	IF	CITATIONS
19	Low-Temperature Plasma-Assisted Atomic-Layer-Deposited SnO ₂ as an Electron Transport Layer in Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30367-30378.	4.0	88
20	Atomic Layer Deposition Enabled Perovskite/PEDOT Solar Cells in a Regular n–i–p Architectural Design. Advanced Materials Interfaces, 2017, 4, 1700043.	1.9	33
21	Crystalline silicon solar cell with front and rear polysilicon passivated contacts as bottom cell for hybrid tandems. Energy Procedia, 2017, 124, 621-627.	1.8	8
22	High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy and Environmental Science, 2017, 10, 91-100.	15.6	231
23	Up-scaling perovskite solar cell manufacturing from sheet-to-sheet to roll-to-roll: challenges and solutions. , 2017, , .		2
24	Digitally printed photovoltaic devices with increasing stack complexity. , 2016, , .		0
25	Combination of Advanced Optical Modelling with Electrical Simulation for Performance Evaluation of Practical 4-terminal Perovskite/c-Si Tandem Modules. Energy Procedia, 2016, 92, 669-677.	1.8	14
26	EU COST Action MP1307 $\hat{a} \in$ " Unravelling the degradation mechanisms of emerging solar cell technologies. , 2016, , .		0
27	Reversible degradation in ITO-containing organic photovoltaics under concentrated sunlight. Physical Chemistry Chemical Physics, 2015, 17, 3891-3897.	1.3	29
28	Scaling Up ITOâ€Free Solar Cells. Advanced Energy Materials, 2014, 4, 1300498.	10.2	48
29	Series vs parallel connected organic tandem solar cells: Cell performance and impact on the design and operation of functional modules. Solar Energy Materials and Solar Cells, 2014, 130, 495-504.	3.0	23
30	Lowâ€cost upscaling compatibility of five different ITOâ€free architectures for polymer solar cells. Journal of Applied Polymer Science, 2013, 130, 944-954.	1.3	29
31	The use of polyurethane as encapsulating method for polymer solar cells—An inter laboratory study on outdoor stability in 8 countries. Solar Energy Materials and Solar Cells, 2012, 99, 292-300.	3.0	38
32	Evaluation of ink-jet printed current collecting grids and busbars for ITO-free organic solar cells. Solar Energy Materials and Solar Cells, 2012, 104, 32-38.	3.0	120
33	Current Collecting Grids for ITOâ€Free Solar Cells. Advanced Energy Materials, 2012, 2, 103-110.	10.2	116
34	An inter-laboratory stability study of roll-to-roll coated flexible polymer solar modules. Solar Energy Materials and Solar Cells, 2011, 95, 1398-1416.	3.0	132
35	Technology development for roll-to-roll production of organic photovoltaics. Chemical Engineering and Processing: Process Intensification, 2011, 50, 454-461.	1.8	151
36	ITO-free flexible organic solar cells with printed current collecting grids. Solar Energy Materials and Solar Cells, 2011, 95, 1339-1343.	3.0	320

SJOERD C VEENSTRA

#	Article	IF	CITATIONS
37	On the Importance of Morphology Control in Polymer Solar Cells. Macromolecular Rapid Communications, 2010, 31, 1835-1845.	2.0	77
38	Three-dimensional nanoscale organization of polymer solar cells. Journal of Materials Chemistry, 2009, 19, 5388.	6.7	62
39	Fullerene Bisadducts for Enhanced Openâ€Circuit Voltages and Efficiencies in Polymer Solar Cells. Advanced Materials, 2008, 20, 2116-2119.	11.1	575
40	Compositional and Electric Field Dependence of the Dissociation of Charge Transfer Excitons in Alternating Polyfluorene Copolymer/Fullerene Blends. Journal of the American Chemical Society, 2008, 130, 7721-7735.	6.6	544
41	Nanoscale structure of solar cells based on pure conjugated polymer blends. Progress in Photovoltaics: Research and Applications, 2007, 15, 727-740.	4.4	78
42	Improving Polymer Based Photovoltaic Devices by Reducing the Voltage Loss at the Donor-Acceptor Interface. Materials Research Society Symposia Proceedings, 2006, 974, 1.	0.1	4
43	Efficient polymer:polymer bulk heterojunction solar cells. Applied Physics Letters, 2006, 88, 083504.	1.5	129
44	Solar cells based on a polymer blend with a maximum external quantum efficiency of 52% and a power conversion efficiency of 1.5%. , 2005, 5938, 292.		0
45	Morphology determination of functional poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene]/poly[oxa-1,4-phenylene-1,2-(1-cyanovinylene)-2 blends as used for all-polymer solar cells. Journal of Applied Polymer Science, 2005, 97, 1001-1007.	-m e8 hoxy,	5-¢3;7-dimeth
46	Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Letters, 2005, 5, 579-583.	4.5	1,499
47	Influence of the polymer architecture on morphology and device properties of polymer bulk heterojunction photovoltaic cells. , 2004, , .		3
48	Analytical study of PPV-oligomer- and C60-based devices for optimising organic solar cells. Solar Energy Materials and Solar Cells, 2000, 61, 43-51.	3.0	20
49	Lightâ€Soak Stable Semitransparent and Bifacial Perovskite Solar Cells for Singleâ€Junction and Tandem Architectures. Solar Rrl, 0, , 2100621.	3.1	3