Jagdish Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711894/publications.pdf

Version: 2024-02-01

		101543	161849
86	3,311	36	54
papers	citations	h-index	g-index
89	89	89	3681
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 2022, 23, 1851.	4.1	128
2	Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymeric Micelles for Improved Gene Delivery of VGF to the Brain through Intranasal Route. Biomedicines, 2022, 10, 493.	3.2	15
3	Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer's disease pathology in transgenic mouse model. International Journal of Biological Macromolecules, 2022, 208, 901-911.	7.5	19
4	Design and Validation of Liposomal ApoE2 Gene Delivery System to Evade Blood–Brain Barrier for Effective Treatment of Alzheimer's Disease. Molecular Pharmaceutics, 2021, 18, 714-725.	4.6	69
5	Smart biopolymers for controlled drug delivery applications. , 2021, , 53-83.		1
6	Improved insulin sensitivity in obese-diabetic mice via chitosan Nanomicelles mediated silencing of pro-inflammatory Adipocytokines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102357.	3.3	15
7	A review of the tortuous path of nonviral gene delivery and recent progress. International Journal of Biological Macromolecules, 2021, 183, 2055-2073.	7.5	34
8	In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. International Journal of Pharmaceutics, 2021, 608, 121095.	5.2	16
9	A Review of Brain-Targeted Nonviral Gene-Based Therapies for the Treatment of Alzheimer's Disease. Molecular Pharmaceutics, 2021, 18, 4237-4255.	4.6	5
10	Smart thermosensitive copolymer incorporating chitosan–zinc–insulin electrostatic complexes for controlled delivery of insulin: effect of chitosan chain length. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1054-1068.	3.4	13
11	Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102112.	3.3	36
12	Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies. Bioengineering and Translational Medicine, 2020, 5, e10150.	7.1	12
13	In vitro and in vivo characterization of CPP and transferrin modified liposomes encapsulating pDNA. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102225.	3.3	23
14	Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 354-365.	2.5	31
15	Efficient neuronal targeting and transfection using RVG and transferrin-conjugated liposomes. Brain Research, 2020, 1734, 146738.	2.2	41
16	In Vitro and in Vivo Optimization of Phase Sensitive Smart Polymer for Controlled Delivery of Rivastigmine for Treatment of Alzheimer's Disease. Pharmaceutical Research, 2020, 37, 34.	3.5	14
17	GLUT-1: An Effective Target To Deliver Brain-Derived Neurotrophic Factor Gene Across the Blood Brain Barrier. ACS Chemical Neuroscience, 2020, 11, 1620-1633.	3.5	50
18	Treatment of insulin resistance in obesity-associated type 2 diabetes mellitus through adiponectin gene therapy. International Journal of Pharmaceutics, 2020, 583, 119357.	5.2	31

#	Article	IF	Citations
19	Nerve Growth Factor Gene Delivery across the Blood–Brain Barrier to Reduce Beta Amyloid Accumulation in AD Mice. Molecular Pharmaceutics, 2020, 17, 2054-2063.	4.6	25
20	Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosanâ€ʻzinc-insulin complexes incorporated in thermosensitive copolymer. Journal of Controlled Release, 2020, 323, 161-178.	9.9	37
21	<p>Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties</p> . International Journal of Nanomedicine, 2019, Volume 14, 6497-6517.	6.7	51
22	Chitosan for gene, DNA vaccines, and drug delivery. , 2019, , 515-550.		9
23	ApoE-2 Brain-Targeted Gene Therapy Through Transferrin and Penetratin Tagged Liposomal Nanoparticles. Pharmaceutical Research, 2019, 36, 161.	3.5	48
24	Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. International Journal of Pharmaceutics, 2019, 566, 717-730.	5. 2	38
25	Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. Journal of Controlled Release, 2019, 307, 247-260.	9.9	103
26	Diblock and triblock copolymers of polylactide and polyglycolide. , 2019, , 449-477.		4
27	Editorial of Special Issue "Surface-Functionalized Nanoparticles as Drug Carriers― International Journal of Molecular Sciences, 2019, 20, 6352.	4.1	2
28	Controlled Delivery of Salmon Calcitonin Using Thermosensitive Triblock Copolymer Depot for Treatment of Osteoporosis. ACS Omega, 2019, 4, 1157-1166.	3 . 5	17
29	Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids and Surfaces B: Biointerfaces, 2019, 173, 27-35.	5.0	115
30	Chitosan-Based Systems for Gene Delivery. , 2019, , 229-267.		6
31	Dual Functionalized 5-Fluorouracil Liposomes as Highly Efficient Nanomedicine for Glioblastoma Treatment as Assessed in an InÂVitro Brain Tumor Model. Journal of Pharmaceutical Sciences, 2018, 107, 2902-2913.	3.3	55
32	Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. Journal of Controlled Release, 2018, 286, 264-278.	9.9	88
33	Electroporation for Dermal and Transdermal Drug Delivery. , 2017, , 105-122.		10
34	Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymer and Their Nanomicelles for Nonviral Gene Delivery Applications. Bioconjugate Chemistry, 2017, 28, 2772-2783.	3.6	60
35	The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. International Journal of Molecular Sciences, 2016, 17, 806.	4.1	66
36	Cell Penetrating Peptide Conjugated Chitosan for Enhanced Delivery of Nucleic Acid. International Journal of Molecular Sciences, 2015, 16, 28912-28930.	4.1	66

#	Article	IF	CITATIONS
37	Effect of Molar Mass and Water Solubility of Incorporated Molecules on the Degradation Profile of the Triblock Copolymer Delivery System. Polymers, 2015, 7, 1510-1521.	4.5	10
38	Addition of Zinc Improves the Physical Stability of Insulin in the Primary Emulsification Step of the Poly(lactide-co-glycolide) Microsphere Preparation Process. Polymers, 2015, 7, 836-850.	4.5	10
39	APC targeted micelle for enhanced intradermal delivery of hepatitis B DNA vaccine. Journal of Controlled Release, 2015, 207, 143-153.	9.9	57
40	Hexanoic Acid and Polyethylene Glycol Double Grafted Amphiphilic Chitosan for Enhanced Gene Delivery: Influence of Hydrophobic and Hydrophilic Substitution Degree. Molecular Pharmaceutics, 2014, 11, 982-994.	4.6	54
41	Influence of Short-Chain Cell-Penetrating Peptides on Transport of Doxorubicin Encapsulating Receptor-Targeted Liposomes Across Brain Endothelial Barrier. Pharmaceutical Research, 2014, 31, 1194-1209.	3.5	64
42			

#	Article	IF	Citations
55	Thermosensitive Polymers for Controlled Delivery of Hormones. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 457-479.	1.0	3
56	Controlled Delivery of Basal Insulin from Phase-Sensitive Polymeric Systems After Subcutaneous Administration: In Vitro Release, Stability, Biocompatibility, In Vivo Absorption, and Bioactivity of Insulin. Journal of Pharmaceutical Sciences, 2011, 100, 2161-2171.	3.3	17
57	Basal level insulin delivery: In vitro release, stability, biocompatibility, and in vivo absorption from thermosensitive triblock copolymers. Journal of Pharmaceutical Sciences, 2011, 100, 4790-4803.	3.3	19
58	Thermosensitive Drug Delivery System of Salmon Calcitonin: In Vitro Release, In Vivo Absorption, Bioactivity and Therapeutic Efficacies. Pharmaceutical Research, 2010, 27, 272-284.	3.5	38
59	In Vivo Absorption of Steroidal Hormones from Smart Polymer Based Delivery Systems. Journal of Pharmaceutical Sciences, 2010, 99, 3381-3388.	3.3	19
60	Insulin Loaded PLGA Microspheres: Effect of Zinc Salts on Encapsulation, Release, and Stability. Journal of Pharmaceutical Sciences, 2009, 98, 529-542.	3.3	47
61	Evaluation of polyanhydride microspheres for basal insulin delivery: Effect of copolymer composition and zinc salt on encapsulation, in vitro release, stability, in vivo absorption and bioactivity in diabetic rats. Journal of Pharmaceutical Sciences, 2009, 98, 4237-4250.	3.3	37
62	Poly (lactide-co-glycolide)-Polymethacrylate Nanoparticles for Intramuscular Delivery of Plasmid Encoding Interleukin-10 to Prevent Autoimmune Diabetes in Mice. Pharmaceutical Research, 2009, 26, 72-81.	3.5	81
63	Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein. International Journal of Pharmaceutics, 2009, 365, 34-43.	5.2	64
64	Controlled release of growth hormone from thermosensitive triblock copolymer systems: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2008, 352, 58-65.	5.2	71
65	Controlled delivery of aspirin: Effect of aspirin on polymer degradation and in vitro release from PLGA based phase sensitive systems. International Journal of Pharmaceutics, 2008, 357, 119-125.	5.2	93
66	Phase-sensitive polymer-based controlled delivery systems of leuprolide acetate: In vitro release, biocompatibility, and in vivo absorption in rabbits. International Journal of Pharmaceutics, 2007, 328, 42-48.	5.2	26
67	Thermosensitive polymers: Synthesis, characterization, and delivery of proteins. International Journal of Pharmaceutics, 2007, 341, 68-77.	5.2	51
68	Preparation, characterization, cytotoxicity and transfection efficiency of poly(dl-lactide-co-glycolide) and poly(dl-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA. International Journal of Pharmaceutics, 2007, 343, 247-254.	5.2	88
69	Poly Lactic Acid Based Injectable Delivery Systems for Controlled Release of a Model Protein, Lysozyme. Pharmaceutical Development and Technology, 2006, 11, 79-86.	2.4	21
70	Prospects for Vaccines for Allergic and Other Immunologic Skin Disorders. American Journal of Clinical Dermatology, 2006, 7, 145-153.	6.7	3
71	Skin targeted DNA vaccine delivery using electroporation in rabbits. International Journal of Pharmaceutics, 2006, 308, 61-68.	5.2	44
72	Triblock copolymers: synthesis, characterization, and delivery of a model protein. International Journal of Pharmaceutics, 2005, 288, 207-218.	5.2	126

#	Article	IF	CITATION
73	Skin targeted DNA vaccine delivery using electroporation in rabbits. International Journal of Pharmaceutics, 2005, 294, 53-63.	5.2	55
74	Controlled delivery of testosterone from smart polymer solution based systems: In vitro evaluation. International Journal of Pharmaceutics, 2005, 295, 183-190.	5.2	93
75	Preparation, in vitro release, in vivo absorption and biocompatibility studies of insulin-loaded microspheres in rabbits. AAPS PharmSciTech, 2005, 6, E487-E494.	3.3	30
76	In Vitro Release of Levonorgestrel from Phase Sensitive and Thermosensitive Smart Polymer Delivery Systems. Pharmaceutical Development and Technology, 2005, 10, 319-325.	2.4	40
77	Effect of additives on the release of a model protein from PLGA microspheres. AAPS PharmSciTech, 2001, 2, 86-92.	3.3	33
78	EFFECT OF JP-8 JET FUEL EXPOSURE ON THE ULTRASTRUCTURE OF SKIN. Cutaneous and Ocular Toxicology, 2001, 20, 11-21.	0.3	3
79	Effect of Additives on Stability of Etoposide in PLGA Microspheres. Drug Development and Industrial Pharmacy, 2001, 27, 345-350.	2.0	6
80	Effect of additives on the release of a model protein from PLGA microspheres. AAPS PharmSciTech, 2001, 2, 86-92.	3.3	25
81	Effect of isopropyl myristic acid ester on the physical characteristics and in vitro release of etoposide from PLGA microspheres. AAPS PharmSciTech, 2000, 1, 49-54.	3.3	16
82	Stability of Luteinizing Hormone Releasing Hormone: Effects of pH, Temperature, Pig Skin, and Enzyme Inhibitors. Pharmaceutical Development and Technology, 2000, 5, 417-422.	2.4	1
83	QUANTITATION OF LEUPROLIDE ACETATE BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 3023-3031.	1.0	6
84	HPLC METHOD FOR QUANTIFICATION OF ARGININE CONTAINING VASOPRESSIN. Journal of Liquid Chromatography and Related Technologies, 1999, 22, 551-560.	1.0	2
85	Mechanism of transport enhancement of LHRH through porcine epidermis by terpenes and iontophoresis: permeability and lipid extraction studies. Pharmaceutical Research, 1998, 15, 1857-1862.	3.5	54
86	Topical iontophoretic drug delivery: Pathways, principles, factors, and skin irritation., 1996, 16, 285-296.		27